Objectives: To evaluate and compare the remineralization potential of casein phosphopeptide-amorphous calcium phosphate fluoride, tricalcium phosphate and grape seed extract on artificial caries lesions in primary enamel.

Study Design: A sample of 40 non-carious, primary molar teeth was collected and cut in longitudinal sections into three equal halves. Those 120 samples were divided into four equal groups. Group A: Sections treated with casein phosphopeptide-amorphous calcium phosphate fluoride (CPP-ACPF), Group B: Sections treated with tricalcium phosphate, Group C: Sections treated with grape seed extract Group D: Sections treated with deionized water (control group). Samples were evaluated for change in surface characteristics, mineral content using Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) and microhardness using Vicker's microhardness tester. Cavitated lesions were evaluated for Cone beam computer tomography to obtain baseline data post remineralization.

Results: The remineralization potential of grape seed extract was found to be greater compared to tricalcium phosphate followed by CPP-ACPF.

Conclusion: All the three groups viz. CPP-ACPF, tricalcium phosphate and grape seed extract showed remineralization under the in vitro pH cycling model, while grape seed extract group showed significantly greater remineralization compared to the CPP-ACPF and tricalcium phosphate groups.

Download full-text PDF

Source
http://dx.doi.org/10.22514/jocpd.2022.010DOI Listing

Publication Analysis

Top Keywords

tricalcium phosphate
24
grape seed
24
seed extract
24
group sections
16
sections treated
16
casein phosphopeptide-amorphous
12
phosphopeptide-amorphous calcium
12
calcium phosphate
12
phosphate fluoride
12
phosphate grape
12

Similar Publications

Purpose Of The Study: The preclinical study aimed to compare the healing of segmental bone defects treated with biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel with the established autologous spongioplasty. Another aim was to evaluate the hydrogel as a scaffold for osteoinductive growth factor of bone morphogenetic protein-2 (BMP-2) and stem cells.

Material And Methods: The study was conducted in an in vivo animal model.

View Article and Find Full Text PDF

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Spinal fusion surgery remains a significant challenge due to limitations in current bone graft materials, particularly in terms of bioactivity, integration, and safety. This study presents an innovative approach using an injectable hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) hydrogel combined with stromal vascular fraction (SVF) and low-dose recombinant human BMP-2 (rhBMP-2) to enhance osteodifferentiation and angiogenesis. Through a series of in vitro studies and preclinical models involving rats and minipigs, we demonstrated that the hydrogel system enables the sustained release of rhBMP-2, resulting in significantly improved bone density and integration, alongside reduced inflammatory responses.

View Article and Find Full Text PDF
Article Synopsis
  • Artificial bone made from calcium carbonate resorbs faster than calcium phosphate-based materials, showing potential for early bone replacement.
  • Animal studies indicate that calcium carbonate ceramics can lead to better bone formation than existing artificial options in the short term, but long-term results are inadequate due to resorption issues.
  • Adding silica to calcium carbonate ceramics regulates the resorption rate, resulting in better bone formation after 12 weeks and aligning resorption rates with bone growth more effectively.
View Article and Find Full Text PDF

Purpose: To perform vertical bone augmentation on rat parietal bone by coating the inner surface of dense polytetrafluoroethylene (d-PTFE) domes with hydroxyapatite (HA) using Erbium Yttrium Aluminum Garnet (Er:YAG) pulsed laser deposition in a rat model.

Methods: The d-PTFE plate surface, α-tricalcium phosphate (α-TCP) coating, and HA coating were measured using scanning electron microscopy and X-ray diffraction to confirm the replacement of α-TCP with HA via high-pressure steam sterilization. The dome was glued to the center of the rat parietal bone and closed with periosteal and epithelial sutures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!