Objective: We explored the potential of neurofilament light chain (NfL) in serum and cerebrospinal fluid as a biomarker for neurodestruction in status epilepticus.
Methods: In a retrospective analysis, we measured NfL in serum and cerebrospinal fluid samples of patients with status epilepticus using a highly sensitive single-molecule array technique (Simoa). Status epilepticus was diagnosed according to ILAE criteria. Additionally, we employed an alternative classification with more emphasis on the course of status epilepticus. We used data from three large control groups to compare NfL in status epilepticus versus neurologically healthy controls.
Results: We included 28 patients (mean age: 69.4 years, SD: 15 years) with a median status duration of 44 h (IQR: 80 h). Twenty-one patients (75%) suffered from convulsive status epilepticus and seven (25%) from non-convulsive status epilepticus. Six patients died (21%). Cerebrospinal fluid and serum NfL concentrations showed a high correlation (r = 0.73, p < 0.001, Pearson). The main determinant of NfL concentration was the status duration. NfL concentrations did not differ between convulsive status epilepticus and convulsive status epilepticus classified according to the ILAE or to the alternative classification without and with adjusting for status duration and time between status onset and sampling. We found no association of NfL concentration with death, treatment refractoriness, or prognostic scores.
Conclusion: The results suggest that neurodestruction in status epilepticus measured by NfL is mainly determined by status duration, not status type nor therapy refractoriness. Therefore, our results suggest that regarding neurodestruction convulsive and non-convulsive status epilepticus are both neurological emergencies of comparable urgency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025237 | PMC |
http://dx.doi.org/10.1007/s00415-022-11547-4 | DOI Listing |
Epilepsia
January 2025
Department of Neurology, University of California, San Francisco, San Francisco, California, USA.
Objective: Interhospital transfers for status epilepticus (SE) are common, and some are avoidable and likely lower yield. The use of interhospital transfer may differ in emergency department (ED) and inpatient settings, which contend with differing clinical resources and financial incentives. However, transfer from these two settings is understudied, leaving gaps in our ability to improve the hospital experience, cost, and triage for this neurologic emergency.
View Article and Find Full Text PDFMethodsX
June 2025
Medical College of Wisconsin, Department of Neurosurgery, 8701 Watertown Plank Road, Milwaukee, WI, 53226.
Electrographic recording of brain activity through either surface electrodes (electroencephalography, EEG) or implanted electrodes (electrocorticography, ECOG) are valuable research tools in neuroscience across many disciplines, including epilepsy, sleep science and more. Research techniques to perform recordings in rodents are wide-ranging and often require custom parts that may not be readily available. Moreover, the information required to connect individual components is often limited and can therefore be challenging to implement.
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Key Laboratory of Gene Regulation and Systems Biology, and Brain Research Center, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
Optogenetics is a valuable tool for studying the mechanisms of neurological diseases and is now being developed for therapeutic applications. In rodents and macaques, improved channelrhodopsins have been applied to achieve transcranial optogenetic stimulation. While transcranial photoexcitation of neurons has been achieved, noninvasive optogenetic inhibition for treating hyperexcitability-induced neurological disorders has remained elusive.
View Article and Find Full Text PDFExp Anim
January 2025
Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia.
Status epilepticus is linked to cognitive decline due to damage to the hippocampus, a key structure involved in cognition. The hippocampus's high vulnerability to epilepsy-related damage is the main reason for this impairment. Convulsive seizures, such as those observed in status epilepticus, can cause various hippocampal pathologies, including inflammation, abnormal neurogenesis, and neuronal death.
View Article and Find Full Text PDFJ Neurol Sci
January 2025
Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan.
Background: Acute encephalopathy is a severe condition predominantly affecting children with viral infections. The purpose of this study was to elucidate the epidemiology, treatment, and management of acute encephalopathy. The study also aimed to understand how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected epidemiological trends.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!