The effectiveness of eight-years phosphorus reducing inputs on double cropping paddy: Insights into productivity and soil-plant phosphorus trade-off.

Sci Total Environ

College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China. Electronic address:

Published: March 2023

Abundant evidence has demonstrated the feasibility of reducing phosphorus (P) input to face diminishing phosphate rock resources and deteriorating environmental quality in double-cropping paddy. However, the sustainability of reduced P input in the context of maintaining productivity and P efficient utilization is not yet clear. Herein, an 8-year (2013-2021) field-based database was built to explore the effects of reduced P input on rice productivity and the soil-plant P trade-off in double-cropping paddy. In the early and late rice seasons, compared with conventional P fertilization (early rice, 90 kg hm; late rice, 60 kg hm), the average yield of reduced 10 % P treatment increased by 4.3 % and 2.1 %, respectively; reduced 10-30 % P treatments increased average P use efficiency by 17.1-18.4 % and 14.0-17.2 %, decreased average total P runoff loss by 14.9-33.2 % and 20.8-36.4 %, and decreased average total P leaching loss by 18.5-49.0 % and 24.0-46.1 %, respectively. Compared with conventional fertilization, reduced P fertilizer input by 10 % significantly increased the content of the soil labile-P fraction while reducing that of the soil stable-P fraction. Soil ligand-P and exchangeable-P content decreased with the gradient reduction of P fertilizer input (10-30 %). The main predictors of the change in rice yield and plant P uptake were soil ligand-P and exchangeable-P content, respectively. The dominant predictor of both the P runoff loss and the P activation coefficient was the inorganic P content extracted by NaHCO. These findings suggest that reduced P input by 10 % could maintain rice productivity and P use efficiency in the double-cropping paddy, and the transformations between soil P components and increases in P bioavailability may be the key drivers maintaining rice productivity and P utilization under the context of reduced P loading.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.161429DOI Listing

Publication Analysis

Top Keywords

double-cropping paddy
12
reduced input
12
rice productivity
12
productivity soil-plant
8
late rice
8
compared conventional
8
conventional fertilization
8
decreased average
8
average total
8
runoff loss
8

Similar Publications

Ammonia oxidation plays a vital role in regulating soil nitrogen (N) cycle in agricultural soil, which is significantly influenced by different fertilizer regimes. However, there is still need to further investigate the effects of different fertilizer managements on rhizosphere soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) community in the double-cropping rice field. Therefore, the effects of different long-term (37 years) fertilizer managements on rhizosphere soil potential nitrification activity (PNA), AOA and AOB community structure, and its relationship under the double-cropping rice system in southern of China were studied in the present paper.

View Article and Find Full Text PDF

Exploration of the bio-availability and the risk thresholds of cadmium and arsenic in contaminated paddy soils.

Heliyon

December 2024

The Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, The Key Laboratory of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha, 410125, PR China.

Cadmium (Cd) and arsenic (As) contamination risk in paddy soils has raised global concern. In order to scientifically and objectively evaluate the bioavailability of soil Cd, As and the risk of Cd or As threshold in contaminated farmland, this study was conducted to investigate different types of extractants for their potential extraction efficiency of Cd and As. Soils from two different parent materials in Hunan, Yueyang and Yiyang, typical double-cropping rice production areas in the south of China, were used as test soils.

View Article and Find Full Text PDF

Background: The crested ibis, a species that relies on wetland ecosystems for survival, was once found throughout East Asia but has declined to near extinction in Korea, Russia, and Japan, except China. Artificial propagation of seven individuals found in Yangxian, Shaanxi Province, China has resulted in a stable population. Furthermore, South Korea and Japan are working on restoring populations through donations from China.

View Article and Find Full Text PDF

Soil organic carbon (SOC) plays a vital role in maintaining or enhancing soil fertility and quality of paddy field, but there is still limited information about how SOC mineralization responds to different tillage managements under the double-cropping rice (Oryza sativa L.) system in southern of China. Therefore, this study was designed to explore the changes in SOC content, soil enzyme activities (invertase, cellulose and urease), SOC mineralization at 0-10 cm and 10-20 cm layers and its relationship with 7-years tillage management under the double-cropping rice system of southern China.

View Article and Find Full Text PDF

[Multi-time Scale Variation of Atmospheric Ammonia Concentration and Dry Deposition in a Paddy Rice Region in Subtropical China].

Huan Jing Ke Xue

August 2024

Key Laboratory of Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

Meteorological factors and anthropogenic activities significantly affect atmospheric ammonia (NH) concentration and its dry deposition. Former studies have examined the spatial and temporal variability in atmospheric NH concentrations at monthly scales. However, the characteristics of atmospheric concentrations at finer time scales such as hourly and daily scales and the influencing factors remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!