Insights into the effects of sublethal doses of pesticides glufosinate-ammonium and sulfoxaflor on honey bee health.

Sci Total Environ

Laboratorio de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avda. Italia 3318, Montevideo 11600, Uruguay. Electronic address:

Published: April 2023

Insect pollinators are threatened worldwide, being the exposure to multiple pesticides one of the most important stressor. The herbicide Glyphosate and the insecticide Imidacloprid are among the most used pesticides worldwide, although different studies evidenced their detrimental effects on non-target organisms. The emergence of glyphosate-resistant weeds and the recent ban of imidacloprid in Europe due to safety concerns, has prompted their replacement by new molecules, such as glufosinate-ammonium (GA) and sulfoxaflor (S). GA is a broad-spectrum and non-selective herbicide that inhibits a key enzyme in the metabolism of nitrogen, causing accumulation of lethal levels of ammonia; while sulfoxaflor is an agonist at insect nicotinic acetylcholine receptors (nAChRs) and generates excitatory responses including tremors, paralysis and mortality. Although those molecules are being increasingly used for crop protection, little is known about their effects on non-target organisms. In this study we assessed the impact of chronic and acute exposure to sublethal doses of GA and S on honey bee gut microbiota, immunity and survival. We found GA significantly reduced the number of gut bacteria, and decreased the expression of glucose oxidase, a marker of social immunity. On the other hand, S significantly increased the number of gut bacteria altering the microbiota composition, decreased the expression of lysozyme and increased the expression of hymenoptaecin. These alterations in gut microbiota and immunocompetence may lead to an increased susceptibility to pathogens. Finally, both pesticides shortened honey bee survival and increased the risk of death. Those results evidence the negative impact of GA and S on honey bees, even at single exposition to a low dose, and provide useful information to the understanding of pollinators decline.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.161331DOI Listing

Publication Analysis

Top Keywords

honey bee
12
sublethal doses
8
glufosinate-ammonium sulfoxaflor
8
effects non-target
8
non-target organisms
8
gut microbiota
8
number gut
8
gut bacteria
8
decreased expression
8
insights effects
4

Similar Publications

The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.

View Article and Find Full Text PDF

Honey is a natural product gathered by honeybees from the pollen and nectar of various plants and flowers. The homeland of the Caucasian honey bee, which draws attention with its honey production and is one of the most productive bee races known in the world, is Northeastern Anatolia in Türkiye. This study aims to determine and correlate the phenolic content and antioxidant activity of 54 honey samples obtained from the most important gene centers of the Caucasian bee in Türkiye.

View Article and Find Full Text PDF

Mushrooms are considered as nutraceutical foods that can effectively prevent diseases such as cancer and other serious life-threatening conditions include neurodegeneration, hypertension, diabetes, and hypercholesterolemia. The , also known as the "Golden chanterelle" or "Golden girolle," is a significant wild edible ectomycorrhizal mushroom. It is renowned for its delicious, apricot-like aroma and is highly valued in various culinary traditions worldwide.

View Article and Find Full Text PDF

Urbanization as a major driver of global change modifies biodiversity patterns and the abundance and interactions among species or functional species groups. For example, urbanization can negatively impact both predator-prey and mutualistic relationships. However, empirical studies on how urbanization modifies biotic, particularly multitrophic, interactions are still limited.

View Article and Find Full Text PDF

Planting native flora is a popular conservation strategy for pollinators. When searching for native plants, consumers may encounter cultivars of native plants, which can have different phenotypic traits than plants found in wild populations ("wild-type native plants"). Previous research evaluating pollinator visitation to wild-type native plants and native cultivars has yielded mixed results, in terms of whether their visitation rates are similar or distinct.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!