The role of miRNAs in insulin resistance and diabetic macrovascular complications - A review.

Int J Biol Macromol

Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.

Published: March 2023

Diabetes is the most prevalent metabolic disturbance disease and has been regarded globally as one of the principal causes of mortality. Diabetes is accompanied by several macrovascular complications, including stroke, coronary artery disease (CAD), and cardiomyopathy as a consequence of atherosclerosis. The onset of type 2 diabetes is closely related to insulin resistance (IR). miRNAs have been linked to various metabolic processes, including glucose homeostasis, regulation of lipid metabolism, gluconeogenesis, adipogenesis, glucose transporter type 4 expression, insulin sensitivity, and signaling. Consequently, miRNA dysregulation mediates IR in some target organs, comprising liver, muscle, and adipose tissue. Moreover, miRNAs are crucial in developing diabetes and its associated macrovascular complications through their roles in several signaling pathways implicated in inflammation, apoptosis, cellular survival and migration, the proliferation of vascular smooth muscle cells, neurogenesis, angiogenesis, autophagy, oxidative stress, cardiac remodeling, and fibrosis. Therefore, the purpose of this review is to clarify the role of miRNAs in hepatic, muscle, and adipose tissue IR and explain their roles in the pathogenesis of macrovascular diabetic complications, including stroke, CAD, and cardiomyopathy. Also, explain their roles in gestational diabetes mellitus (GDM). Besides, this review discusses the latest updates on the alteration of miRNA expression in diabetic macrovascular complications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123189DOI Listing

Publication Analysis

Top Keywords

macrovascular complications
16
role mirnas
8
insulin resistance
8
diabetic macrovascular
8
complications including
8
including stroke
8
cad cardiomyopathy
8
muscle adipose
8
adipose tissue
8
explain roles
8

Similar Publications

Objective: Type 2 diabetes mellitus (T2DM) is a major cause of atherosclerosis, as well as an independent risk factor of cardiovascular adverse events. We aimed to evaluate the association of serum Meteorin-like protein (Metrnl) level with carotid atherosclerosis as determined by carotid intima-media thickness (CIMT) status in subjects with T2DM.

Methods: This cross-sectional study included 83 T2DM subjects without pre-existing cardiovascular diseases.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a progressive metabolic disorder that could be an underlying cause of long-term complications that increase mortality. The assessment of the probability of such events could be essential for mortality risk management. This work aimed to establish a framework for risk predictions of macrovascular complications (MVC) and diabetic kidney disease (DKD) in patients with T2D, using real-world data from the Swedish National Diabetes Registry (NDR), in the presence of mortality as a competing risk.

View Article and Find Full Text PDF

Current Perspectives of Diabetic Dyslipidemia and Treatment Modalities.

Curr Med Chem

January 2025

Cukurova University, Faculty of Medicine, Division of Endocrinology, Adana, Turkey.

Introduction: Diabetes mellitus is associated with an increased risk of atherosclerosis related to dyslipidemia. Although the terms hyperlipidemia and Diabetes Mellitus [DM] or diabetic dyslipidemia are interrelated to each other, these two conditions have some differences.

Aim: This study aimed to highlight possible mechanisms of hyperlipidemia and/or dyslipidemia in diabetic patients, which can be treated with available and newer hypolipidemic drugs.

View Article and Find Full Text PDF

A Comprehensive Analysis of Diabetic Complications and Advances in Management Strategies.

J Atheroscler Thromb

January 2025

Department of Endocrinology and Metabolism, Institute of Medicine, University of Tsukuba.

Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), is a pervasive chronic disease that affects millions of people worldwide. It predisposes individuals to a range of severe microvascular and macrovascular complications, which drastically impact the patient's quality of life and increase mortality rates owing to various comorbidities. This extensive review explores the intricate pathophysiology underlying diabetic complications, focusing on key mechanisms, such as atherosclerosis, insulin resistance, chronic inflammation, and endothelial dysfunction.

View Article and Find Full Text PDF

Clonal haematopoiesis of indeterminate potential and risk of microvascular complications among individuals with type 2 diabetes: a cohort study.

Diabetes

January 2025

Department of Big Data in Health Science, Zhejiang University School of Public Health and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Clonal haematopoiesis of indeterminate potential (CHIP) is associated with macrovascular diseases, including coronary artery disease and stroke. However, the effects of CHIP on microvascular complication have not been evaluated in individuals with type 2 diabetes (T2D). This study included 20,712 T2D participants without prevalent diabetic microvascular complication (DMCs) and hematologic malignancy at baseline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!