The stem cell-based research for reproductive biotechnology has been widely studied and shows promise for repairing defective tissue or degenerated cells to treat different diseases. The adipose tissue and amniotic membrane have awakened great interest in regenerative medicine and arises as a promising source of mesenchymal stem cells. Both types, adipose and amniotic derived mesenchymal stem cells (AMSCs) are multipotent cells with an enhanced ability to differentiate into multiple lineages.. We aimed to evaluate the effect of basal supplementation of exosomes in cell cultures with canine amniotic mesenchymal stem cells (MSCs). Mesenchymal stem cells derived from canine amniotic and adipose tissue were isolated and cultured performing cell passages until 80-90% confluence was reached. The growth curve was determined and peak cell growth was observed in the second passage. The cells were then characterized and differentiated into adipogenic, chondrogenic and osteogenic lineages. Extracellular vesicles from amnion were isolated using an ultracentrifugation protocol and characterized by nanosight analysis. To evaluate their ability to improve cellular viability in naturally inefficient passages, exosomes were co-cultures to the MSC cells. The results showed a 15-20% increase in the expansion rate of cultures supplemented with vesicles extracted in the first and second passages when compared to the control group. Statistical analysis using the Dunnett test (p ≤ 0.05) corroborated this result, showing a positive correlation between supplementation and expansion rate. These results indicate not only the importance of exosomes in the cell communication process but also the feasibility of the culture supplementation protocol for therapeutic purposes. The potential of the AMSCs for reproductive biotechnology is undoubted, however, their application to repair reproductive disorders and the involved mechanisms remain elusive. The strategies to enable the Adipose Stem Cells and AMSCs application in reproductive biotechnology and optimize their use for tissue regeneration open new venues using exosomes interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2022.12.012 | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFGenes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Clinical Research Center of the Carolinas, Charleston, South Carolina, USA.
Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.
Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!