Surface Oxygen Depletion of Layered Transition Metal Oxides in Li-Ion Batteries Studied by Ambient Pressure X-ray Photoelectron Spectroscopy.

ACS Appl Mater Interfaces

Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States.

Published: January 2023

A new spectro-electrochemical setup was developed to study oxygen depletion from the surface of layered transition metal oxide particles at high degrees of delithiation. An NCM111 working electrode was paired with a chemically delithiated LiFePO counter electrode in a fuel cell-inspired membrane electrode assembly (MEA). A propylene carbonate-soaked Li-ion conducting ionomer served as an electrolyte, providing both good electrochemical performance and direct probing of the NCM111 particles during cycling by ambient pressure X-ray photoelectron spectroscopy. The irreversible emergence of an oxygen-depleted phase in the O 1s spectra of the layered oxide particles was observed upon the first delithiation to high state-of-charge, which is in excellent agreement with oxygen release analysis via mass spectrometry analysis of such MEAs. By comparing the metal oxide-based O 1s spectral features to the Ni 2p intensity, we can calculate the transition metal-to-oxygen ratio of the metal oxide close to the particle surface, which shows good agreement with the formation of a spinel-like stoichiometry as an oxygen-depleted phase. This new setup enables a deeper understanding of interfacial changes of layered oxide-based cathode active materials for Li-ion batteries upon cycling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880953PMC
http://dx.doi.org/10.1021/acsami.2c19008DOI Listing

Publication Analysis

Top Keywords

oxygen depletion
8
layered transition
8
transition metal
8
li-ion batteries
8
ambient pressure
8
pressure x-ray
8
x-ray photoelectron
8
photoelectron spectroscopy
8
metal oxide
8
oxide particles
8

Similar Publications

Renal cell carcinoma (RCC) is considered as a "metabolic disease" due to various perturbations in metabolic pathways that could drive cancer development. Glycine decarboxylase (GLDC) is a mitochondrial enzyme that takes part in the oxidation of glycine to support nucleotide biosynthesis via transfer of one-carbon units. Herein, we aimed to investigate the potential role of GLDC in RCC development.

View Article and Find Full Text PDF

Adaptation of Archaeal Communities to Summer Hypoxia in the Sediment of Bohai Sea.

Ecol Evol

January 2025

Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Science Tianjin Normal University Tianjin China.

Understanding the adaptation of archaea to hypoxia is essential for deciphering the functions and mechanisms of microbes when suffering environmental changes. However, the dynamics and responses of archaea to the sedimentary hypoxia in Bohai Sea are still unclear. In this study, the diversity, composition, and distribution of archaeal community in sediment along an inshore-offshore transect across the oxygen-depleted area in the Bohai Sea were investigated in June, July, and August of 2021 by employing high-throughput sequencing of 16S rRNA gene.

View Article and Find Full Text PDF

The oxygen-sensitive molybdenum-dependent nitrogenase of Azotobacter vinelandii is protected from oxidative damage by a reversible 'switch-off' mechanism. It forms a complex with a small ferredoxin, FeSII (ref. ) or the 'Shethna protein II', which acts as an O sensor and associates with the two component proteins of nitrogenase when its [2Fe:2S] cluster becomes oxidized.

View Article and Find Full Text PDF

Despite adjuvant treatment with endocrine therapies, estrogen receptor-positive (ER+) breast cancers recur in a significant proportion of patients. Recurrences are attributable to clinically undetectable endocrine-tolerant persister cancer cells that retain tumor-forming potential. Therefore, strategies targeting such persister cells may prevent recurrent disease.

View Article and Find Full Text PDF

High anion gap metabolic acidosis (HAGMA) is a common biochemical abnormality in hospitalized patients, often linked to conditions such as lactic acidosis, renal failure, or drug toxicity. A rare etiology, 5-oxoprolinuria, resulting from acetaminophen use, malnutrition, and sepsis, is increasingly recognized in critically ill patients. We report a 29-year-old male with a history of intellectual disability and normal baseline kidney function who was admitted with acute necrotizing pancreatitis and developed severe metabolic acidosis and acute kidney injury (AKI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!