Microbial maturation disrupted by early-life dysbiosis has been linked with increased asthma risk and severity; however, the immunological mechanisms underpinning this connection are poorly understood. We sought to understand how delaying microbial maturation drives worsened asthma outcomes later in life and its long-term durability. Drinking water was supplemented with antibiotics on Postnatal Days 10-20. To assess the immediate and long-term effects of delaying microbial maturation on experimental asthma, we initiated house dust mite exposure when bacterial diversity was either at a minimum or had recovered. Airway hyperresponsiveness, histology, pulmonary leukocyte recruitment, flow cytometric analysis of cytokine-producing lymphocytes, and assessment of serum IgG1 (Immunoglobulin G1) and IgE (Immunoglobulin E) concentrations were performed. RT-PCR was used to measure IL-13 (Interleukin 13)-induced gene expression in sequentially sorted mesenchymal, epithelial, endothelial, and leukocyte cell populations from the lung. Delayed microbial maturation increased allergen-driven airway hyperresponsiveness and Th17 frequency compared with allergen-exposed control mice, even when allergen exposure began after bacterial diversity recovered. Blockade of IL-17A (Interleukin 17A) reversed the airway hyperresponsiveness phenotype. In addition, allergen exposure in animals that experienced delayed microbial maturation showed signs of synergistic signaling between IL-13 and IL-17A in the pulmonary mesenchymal compartment. Delaying microbial maturation in neonates promotes the development of more severe asthma by increasing Th17 frequency, even if allergen exposure is initiated weeks after microbial diversity is normalized. In addition, IL-17A-aggravated asthma is associated with increased expression of IL-13-induced genes in mesenchymal, but not epithelial cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10174167PMC
http://dx.doi.org/10.1165/rcmb.2022-0367OCDOI Listing

Publication Analysis

Top Keywords

microbial maturation
28
delayed microbial
12
delaying microbial
12
airway hyperresponsiveness
12
allergen exposure
12
bacterial diversity
8
mesenchymal epithelial
8
th17 frequency
8
maturation
7
microbial
7

Similar Publications

Microbial inheritance through seed: a clouded area needs to be enlightened.

Arch Microbiol

January 2025

Microbiology Section, Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Bardhaman, West Bengal, 713104, India.

Seed endophytes are actively used by the mother plant as both reservoir and vector of beneficial microbes. During seed dormancy endophytes experience significant physiochemical changes and only competent endophytes could colonise successfully in seeds and some of them act as obligate endophyte that are transmitted vertically across generations. The adaptive nature of endophytes allows them to switch lifestyles depending on environment and host conditions.

View Article and Find Full Text PDF

Aquilaria malaccensis Lam., an Agarwood-producing tree native to Southeast Asia, secretes oleoresin, a resin with diverse applications, in response to injuries. To explore the role of endosphere microbial communities during Agarwood development, we utilized a metagenomics approach across three stages: non-symptomatic (NC), symptomatic early (IN), and symptomatic mature (IN1).

View Article and Find Full Text PDF

Separation of life stages within anaerobic fungi (Neocallimastigomycota) highlights differences in global transcription and metabolism.

Fungal Genet Biol

December 2024

University of California, Santa Barbara, Department of Chemical Engineering, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA, 94608, United States. Electronic address:

Anaerobic gut fungi of the phylum Neocallimastigomycota are microbes proficient in valorizing low-cost but difficult-to-breakdown lignocellulosic plant biomass. Characterization of different fungal life stages and how they contribute to biomass breakdown are critical for biotechnological applications, yet we lack foundational knowledge about the transcriptional, metabolic, and enzyme secretion behavior of different life stages of anaerobic gut fungi: zoospores, germlings, immature thalli, and mature zoosporangia. A Miracloth-based technique was developed to enrich cell pellets with zoospores - the free-swimming, flagellated, young life stage of anaerobic gut fungi.

View Article and Find Full Text PDF

A novel robust network construction and analysis workflow for mining infant microbiota relationships.

mSystems

December 2024

Laboratory of Microbiology, Immunology, and Metabolism, Diprobio (Shanghai) Co., Limited, Shanghai, China.

Unlabelled: The gut microbiota plays a crucial role in infant health, with its development during the first 1,000 days influencing health outcomes. Understanding the relationships within the microbiota is essential to linking its maturation process to these outcomes. Several network-based methods have been developed to analyze the developing patterns of infant microbiota, but evaluating the reliability and effectiveness of these approaches remains a challenge.

View Article and Find Full Text PDF

Introduction: The development of the human gut microbiota is shaped by factors like delivery mode, infant feeding practices, maternal diet, and environmental conditions. Diet plays a pivotal role in determining the diversity and composition of the gut microbiome, which in turn impacts immune development and overall health during this critical period. The early years, which are vital for microbial shaping, highlight a gap in understanding how the shift from milk-based diets to solid foods influences gut microbiota development in infants and young children, particularly in Yaoundé, Cameroon.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!