Nitrocellulose is a reactive derivative of cellulose, one of the most commonly occurring natural materials. Nitration of cellulose decreases the stability of the structure, meaning less is understood about its structure and reactions. Although cellulose is often found in fully crystalline forms, nitrocellulose is more commonly paracrystalline, or amorphous. We present a protocol based on molecular dynamics simulations for creating realistic structures of nitrocellulose, particularly focusing on the crystallinity of the systems being created. We will also provide a detailed analysis of the geometric and dynamical parameters used to quantify the degree of crystallinity for the structures created here, with nitration levels varying from 0-14.14 wt% nitrogen content. Paracrystalline cellulose was not created using the protocol designed here, although it was found that the more nitrated a nitrocellulose system, the more the structure tends to paracrystallinity. This is due to a decrease in the number of hydrogen bonds present, and an increase in the size of the functional groups pushing the chains apart and weakening the interactions between the chains of the structure. The structures created are representative of realistic systems, which in the future will be able to be used to build further understanding of long-term storage of nitrocellulose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp05550c | DOI Listing |
Comput Biol Med
January 2025
Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, 54714, Mexico. Electronic address:
Bacterial resistance is a global public health problem because of the ineffectiveness of conventional antibiotics against super pathogens. To counter this situation, the search for or design of new molecules is essential to inhibit the key proteins involved in several stages of bacterial infection. One of these key proteins is DNA gyrase, which is responsible for packaging and unfolding of DNA chains during replication.
View Article and Find Full Text PDFComput Biol Med
January 2025
Faculty of Chemistry, University of Science (Vietnam National University, Hanoi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Viet Nam; VNU University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Ha Noi, Viet Nam.
α-d-Glucose-conjugated thioureas 8a-w of substituted 4,6-diaryl-2-aminopyrimindines were designed, synthesized, and screened for their antidiabetic inhibitory activity. The thioureas with the strongest potential inhibitory activity included 8f (IC = 11.32 ± 0.
View Article and Find Full Text PDFJ Mol Graph Model
January 2025
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Gomtinagar Extension, Lucknow, 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow Campus, India. Electronic address:
The Acinetobacter baumannii is a member of the "ESKAPE" bacteria responsible for many serious multidrug-resistant (MDR) illnesses. This bacteria swiftly adapts to environmental cues leading to the emergence of multidrug-resistant variants, particularly in hospital/medical settings. In this work, we have demonstrated the outer membrane protein 33-36 (Omp33-36) porin as a potential therapeutic target in A.
View Article and Find Full Text PDFCell Calcium
January 2025
Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
Membrane contact sites (MCS) are specialized compartments found in all eukaryotic cells that are formed between membranes of different organelles that are in close proximity. MCS have important functions as they are sites of efficient transfer of molecules between neighboring organelles. Two recent articles have used the splitFAST system to mark and follow the dynamics of membrane contact sites and used the method to highlight the importance of MCS between the endoplasmic reticulum (ER) and lipid droplets in metabolic adaptation and MCS between the ER and mitochondria in Ca signal propagation.
View Article and Find Full Text PDFGenetics
January 2025
Interfaculty Bioinformatics Unit, University of Bern, Bern 3012, Switzerland.
Purifying selection is a critical factor in shaping genetic diversity. Current theoretical models mostly address scenarios of either very weak or strong selection, leaving a significant gap in our knowledge. The effects of purifying selection on patterns of genomic diversity remain poorly understood when selection against deleterious mutations is weak to moderate, particularly when recombination is limited or absent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!