Comparison of nested models is common in applications of structural equation modeling (SEM). When two models are nested, model comparison can be done via a chi-square difference test or by comparing indices of approximate fit. The advantage of fit indices is that they permit some amount of misspecification in the additional constraints imposed on the model, which is a more realistic scenario. The most popular index of approximate fit is the root mean square error of approximation (RMSEA). In this article, we argue that the dominant way of comparing RMSEA values for two nested models, which is simply taking their difference, is problematic and will often mask misfit, particularly in model comparisons with large initial degrees of freedom. We instead advocate computing the RMSEA associated with the chi-square difference test, which we call RMSEA. We are not the first to propose this index, and we review numerous methodological articles that have suggested it. Nonetheless, these articles appear to have had little impact on actual practice. The modification of current practice that we call for may be particularly needed in the context of measurement invariance assessment. We illustrate the difference between the current approach and our advocated approach on three examples, where two involve multiple-group and longitudinal measurement invariance assessment and the third involves comparisons of models with different numbers of factors. We conclude with a discussion of recommendations and future research directions. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

Download full-text PDF

Source
http://dx.doi.org/10.1037/met0000537DOI Listing

Publication Analysis

Top Keywords

nested model
8
model comparisons
8
structural equation
8
equation modeling
8
nested models
8
chi-square difference
8
difference test
8
approximate fit
8
measurement invariance
8
invariance assessment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!