Regioselective difunctionalization of arenes remains a long-standing challenge in organic chemistry. We report a novel and general Fe/Ti synergistic methodology for regioselective synthesis of various polysubstituted arenes through either E/E' or Nu/E difunctionalizations of arenes. Preliminary results showed that an unprecedented 1,2-Fe/Ti heterobimetallic arylene intermediate bearing two distinct C-M bonds is essential to the regioselective difunctionalization.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c13207DOI Listing

Publication Analysis

Top Keywords

regioselective difunctionalization
8
synergism fe/ti
4
fe/ti enabled
4
regioselective
4
enabled regioselective
4
regioselective arene
4
arene difunctionalization
4
difunctionalization regioselective
4
difunctionalization arenes
4
arenes remains
4

Similar Publications

Photocatalyzed Azidofunctionalization of Alkenes via Radical-Polar Crossover.

Angew Chem Int Ed Engl

January 2025

Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.

The azidofunctionalization of alkenes under mild conditions using commercially available starting materials and easily accessible reagents is reported based on a radical-polar crossover strategy. A broad range of alkenes, including vinyl arenes, enamides, enol ethers, vinyl sulfides, and dehydroamino esters, were regioselectively functionalized with an azide and nucleophiles such as azoles, carboxylic acids, alcohols, phosphoric acids, oximes, and phenols. The method led to a more efficient synthesis of 1,2-azidofunctionalized pharmaceutical intermediates when compared to previous approaches, resulting in both reduction of step count and increase in overall yield.

View Article and Find Full Text PDF

A Ni-catalyzed protocol for the regioselective and stereoselective three-component fluoroalkylthiolation of alkynes with fluoroalkyl halides and thiosulfonates is presented. This reductive difunctionalization provides an efficient strategy for the rapid construction of fluoroalkyl-incorporated vinylthioethers under mild conditions in moderate to good yields.

View Article and Find Full Text PDF

In this work, a switchable synthesis of β-ketosulfone and α-chloroketone through a radical difunctionalization of alkenes is reported. The transformation works well under iron peroxo species/photoredox dual catalysis and an open-flask atmosphere, and the reaction is highlighted with good yields and a broad reaction scope. Mechanism studies show that the reaction is initiated by a formal [4 + 2] cyclization of the sulfonyl radical in a regioselective manner.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new method for remote functionalization that uses a borenium ion as a catalyst instead of traditional transition metals, addressing issues like metal residue and catalyst poisoning.
  • The process allows for site-selective modification of molecules by enabling the "walking" of a boron group along a carbon chain, ultimately favoring the formation of α-borylation products.
  • This metal-free approach shows compatibility with various functional groups and can facilitate the synthesis of unique compounds, including those helpful in creating bioactive molecules.
View Article and Find Full Text PDF

A nickel-catalyzed intermolecular three-component 1,1-difunctionalization of unactivated alkenes with quinoxaline/naphthoquinone and arylboronic acids via organometallic-radical relay is developed. This efficient protocol provides a new method to access a variety of arylalkanes in moderate to good yields with a broad substrate scope and excellent functional group tolerance. The mechanistic studies provide insights into the mechanism and origin of chemo- and regioselectivity as well as confirm the generation of functionalized benzylic radicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!