Philosophical theories have attempted to shed light on the intricate relationships between consciousness and memory since long before this became a major theme in psychology and neuroscience. In the December 2022 issue of Cognitive and Behavioral Neurology , Budson, Richman, and Kensinger (2022) introduced a comprehensive theoretical framework pertaining to the origins of consciousness in relation to the memory system, its implications on our real-time perception of the world, and the neuroanatomical correlates underlying these phenomena. Throughout their paper, Budson et al (2022) focus on their theory's explanatory value regarding several clinical syndromes and experimental findings. In this commentary, we first summarize the theory presented by Budson and colleagues (2022). Then, we suggest a complementary approach of studying the relationships between consciousness and memory through the concept of the human self and its protracted representation through time (so-called mental time travel). Finally, we elaborate on Budson and colleagues' (2022) neuroanatomical explanation to their theory and suggest that adding the concepts of brain networks and cortical gradients may contribute to their theory's interpretability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNN.0000000000000330 | DOI Listing |
J Gerontol A Biol Sci Med Sci
January 2025
Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile.
Postoperative delirium (POD), an acute cognitive dysfunction linked to morbidity and mortality, is characterized by memory impairments and disturbances in consciousness, particularly in patients aged 65 and older. Neuroinflammation and NAD+ imbalance are key mechanisms behind POD, leading to synaptic and cognitive deterioration. However, how surgery contributes to POD and neuroinflammation remains unclear, and effective treatments are lacking.
View Article and Find Full Text PDFJ Immunother Cancer
December 2024
Department of Internal Medicine II, University Hospital Wurzburg, Wurzburg, Germany.
Background: Chimeric antigen receptor (CAR)-T cell therapy has emerged as a transformative modality in the treatment of patients with cancer. However, it is increasingly evident that this therapeutic approach is not without its challenges. The unique nature of CAR-T cells as living drugs introduces a distinct set of side effects.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Molecular Medicine, Brain Signalling Laboratory, Institute of Basic Medical Sciences, Section for Physiology, University of Oslo, Oslo, Norway.
Propofol and ketamine are widely used general anaesthetics, but have different effects on consciousness: propofol gives a deeply unconscious state, with little or no dream reports, whereas vivid dreams are often reported after ketamine anaesthesia. Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist, while propofol is a γ-aminobutyric-acid (GABAA) receptor positive allosteric modulator, but these mechanisms do not fully explain how these drugs alter consciousness. Most previous in vitro studies of cellular mechanisms of anaesthetics have used brain slices or neurons in a nearly "comatose" state, because no "arousing" neuromodulators were added.
View Article and Find Full Text PDFPLoS One
January 2025
Professeur Honoraire au Collège de France, Paris, France.
Background: Abnormalities in body perception in patients affected by anorexia nervosa have been widely studied, but without explicit reference to their relationship to others and the social processes involved. Yet, there are a several arguments supporting impairments in interpersonal relationships in these patients. Notably, some evidence suggests that self/other distinction (SOD), the ability to distinguish one's own body, actions and mental representations from those of others could be impaired.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Institucio Catalana de la Recerca i Estudis Avancats (ICREA), Barcelona, Spain.
Different whole-brain computational models have been recently developed to investigate hypotheses related to brain mechanisms. Among these, the Dynamic Mean Field (DMF) model is particularly attractive, combining a biophysically realistic model that is scaled up via a mean-field approach and multimodal imaging data. However, an important barrier to the widespread usage of the DMF model is that current implementations are computationally expensive, supporting only simulations on brain parcellations that consider less than 100 brain regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!