Drought is an extreme climatic event that mostly occurs as a result of low rainfall, which leads to lack of water in various agro-ecological conditions of Pakistan. The condition could be further exacerbated by the prevailing dry weather. Therefore, accurate, timely, and efficient drought monitoring is crucial to ensure that its adverse effects are mitigated. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) and TRMM-based data were used together with remote sensing techniques to improve drought mitigation and disaster risk reduction strategies. In order to monitor drought mitigation and disaster risk reduction strategies in Pakistan, the crop water stress index (CWSI), vegetation condition index (VCI), normalized vegetation supply water index (NVSWI), vegetation health index (VHI), and temperature vegetation drought index (TVDI) were chosen as the instrument. Due to low rainfall and significantly low vegetation, CWSI, NDVI, TVDI, and VHI are useful in characterizing drought mitigation strategies in Pakistan. Monthly NDVI, NAP, NVSWI, TVDI, VCI, and VHI values and heat map analysis show that Pakistan suffered from drought in years 2001, 2002, and 2006. Seasonal CWSI, NDVI, VHI, and TVDI confirmed that Pakistan was affected by severe drought in 2001, which continued and led to severe drought in 2002 and 2006. We generate spatial correlation coefficients between NDVI and NVSWI, VCI, and VHI, and NVSWI and VCI and VHI, while the VCI and VHI values are significantly positively correlated. CWSI, NDVI, VHI, and TVDI show positive signs of effective climate change drought mitigation and disaster risk reduction strategies in Pakistan. Thus, these drought indices have been confirmed to be a complete drought monitoring indicator and reduce the risk of drought in Pakistan.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-25138-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!