The inhibition of protein-protein interactions (PPIs) by small molecules is an exciting drug discovery strategy. Here, we aimed to develop a pipeline to identify candidate small molecules to inhibit PPIs. Therefore, KPI, a Knowledge-based Protein-Protein Interaction Inhibition pipeline, was introduced to improve the discovery of PPI inhibitors. Then, phytochemicals from a collection of known Middle Eastern antiviral herbs were screened to identify potential inhibitors of key PPIs involved in COVID-19. Here, the following investigations were sequenced: 1) Finding the binding partner and the interface of the proteins in PPIs, 2) Performing the blind ligand-protein inhibition (LPI) simulations, 3) Performing the local LPI simulations, 4) Simulating the interactions of the proteins and their binding partner in the presence and absence of the ligands, and 5) Performing the molecular dynamics simulations. The pharmacophore groups involved in the LPI were also characterized. Aloin, Genistein, Neoglucobrassicin, and Rutin are our new pipeline candidates for inhibiting PPIs involved in COVID-19. We also propose KPI for drug repositioning studies.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2163425DOI Listing

Publication Analysis

Top Keywords

knowledge-based protein-protein
8
protein-protein interaction
8
interaction inhibition
8
drug repositioning
8
small molecules
8
ppis involved
8
involved covid-19
8
binding partner
8
lpi simulations
8
inhibition
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!