Highly Anisotropic Second-Order Nonlinear Optical Effects in the Chiral Lead-Free Perovskite Spiral Microplates.

Nano Lett

Hunan Institute of Optoelectronic Integration and Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, School of Physics and Electronic Science, Hunan University, Changsha410082, China.

Published: January 2023

AI Article Synopsis

  • Chiral metal halide perovskites are gaining attention for their potential in second-order nonlinear optics (NLO) due to their unique asymmetric structures.
  • Researchers have successfully synthesized two chiral hybrid bismuth halides with promising traits: a high second harmonic generation effect and an impressive laser-induced damage threshold.
  • The new materials demonstrate enhanced circular polarization sensitivity, making them competitive alternatives to traditional lead-based chiral perovskites and offering a pathway for multifunctional applications in nonlinear photonics.

Article Abstract

Chiral metal halide perovskites with intrinsic asymmetric structures have drawn increased research interest for the application of second-order nonlinear optics (NLO). However, designing chiral perovskites with the features of a large NLO coefficient, high laser-induced damage thresholds (LDT), and environmental friendliness remains a major challenge. Herein, we have synthesized two chiral hybrid bismuth halides: (R/S-MBA)BiBr spiral structure microplates, templated by chiral (R/S)-methylbenzylamine (R/S-MBA). The as-grown chiral lead-free perovskite spiral microplates exhibit a recorded second harmonic generation (SHG) effect with a large effective second-order NLO coefficient () of 11.9 pm V and a high LDT of up to 59.2 mJ cm. More importantly, the twisted screw structures show competitive circular polarization sensitivity at 1200 nm with an anisotropy factor () of 0.58, which is about 3 times higher than that of reported Pb-based chiral perovskites. These findings provide a new platform to design multifunctional lead-free chiral perovskites for nonlinear photonic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c04224DOI Listing

Publication Analysis

Top Keywords

chiral perovskites
12
second-order nonlinear
8
chiral
8
chiral lead-free
8
lead-free perovskite
8
perovskite spiral
8
spiral microplates
8
nlo coefficient
8
highly anisotropic
4
anisotropic second-order
4

Similar Publications

Two-dimensional (2D) chiral hybrid perovskites A2PbI4 (A: chiral organic ion) enable chirality controlled optoelectronic and spin-based properties. A+ organic sublattice induces chirality into the semiconducting [PbI4]2- inorganic sublattice through non-covalent interactions at organic-inorganic interface. Often, the A+ cations in the lattice have different orientations, leading to asymmetry in the non-covalent interactions.

View Article and Find Full Text PDF

Chiroptical Synaptic Perovskite Memristor as Reconfigurable Physical Unclonable Functions.

ACS Nano

December 2024

Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.

Physical unclonable functions (PUFs), often referred to as digital fingerprints, are emerging as critical elements in enhancing hardware security and encryption. While significant progress has been made in developing optical and memory-based PUFs, integrating reconfigurability with sensitivity to circularly polarized light (CPL) remains largely unexplored. Here, we present a chiroptical synaptic memristor (CSM) as a reconfigurable PUF, leveraging a two-dimensional organic-inorganic halide chiral perovskite.

View Article and Find Full Text PDF

Electrically switchable second harmonic generation (SHG) is highly valuable in electro-optic modulators, which can be deployed in data communication and quantum optics. Coupling circular dichroism (CD) with an electrically controlled SHG process is advantageous because it enhances the signal transmission bandwidth and security while enabling multiple modulation modes for optical logic. However, ferroelectrically switchable chiral second-order nonlinearity is rarely reported.

View Article and Find Full Text PDF

Why Mixed Halides in 2D Chiral Perovskites Weaken Chirality-Induced Spin Selectivity.

ACS Nano

December 2024

School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.

2D Ruddlesden-Popper (RP) perovskites, upon inclusion of a chiral amine, exhibit chirality-induced spin selectivity (CISS). Although alloying at the halogen site in MBA-based RPs (MBA: methylbenzylammonium) is one of the suitable routes to tune the CISS effect, the mixed-halide RP perovskites exhibited complete suppression of chirality when probed through circular dichroism (CD). Here, we present the CISS effect in a series of mixed-halide RP perovskites.

View Article and Find Full Text PDF

Electrical polarization switching of perovskite polariton laser.

Nanophotonics

June 2024

Faculty of Physics, Institute of Experimental Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland.

Optoelectronic and spinoptronic technologies benefit from flexible and tunable coherent light sources combining the best properties of nano- and material-engineering to achieve favorable properties such as chiral lasing and low threshold nonlinearities. In this work we demonstrate an electrically wavelength- and polarization-tunable room temperature polariton laser due to emerging photonic spin-orbit coupling. For this purpose, we design an optical cavity filled with both birefringent nematic liquid crystal and an inorganic perovskite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!