This work presents the experimental evaluation of a digital tandem mass filter that is composed of two digitally operated low-resolution mass filters in series whose mass windows are shifted with respect to each other. The overlap of the mass windows allows the resolution (Δ) of ions to be narrowed to provide better resolving power, while the acceptance of the tandem mass filter is defined by the acceptance of the first low-resolution quadrupole. Our experiments show that digital operation fulfills the promise of the tandem mass filter for providing better ion transmission at the same or better resolving power as a single quadrupole mass filter. It allows the user to continuously adjust the resolving power and sensitivity to meet current needs. Most importantly, the observed resolving power/sensitivity characteristics are the same at any mass and /.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jasms.2c00234DOI Listing

Publication Analysis

Top Keywords

mass filter
20
tandem mass
16
resolving power
12
mass
9
digital tandem
8
mass windows
8
better resolving
8
filter
5
experimental validation
4
validation digital
4

Similar Publications

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

Isolated subsegmental pulmonary embolism identification based on international classification of diseases (ICD)-10 codes and imaging reports.

Thromb Res

January 2025

Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; YNHH/Yale Center for Outcomes Research and Evaluation (CORE), New Haven, CT, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. Electronic address:

Background: Isolated subsegmental pulmonary embolism (issPE) is a commonly encountered diagnosis. Although the International Classification of Diseases (ICD)-10 codes are used for research, their validity for identifying issPE is unknown. Moreover, issPE diagnosis is challenging, and the findings from radiology reports may conflict with those from expert radiologists.

View Article and Find Full Text PDF

Rapid and Environment-Friendly LC-MS/MS for Simultaneous Analysis of Amino Acids in Veterinary Medicine.

Vet Med Sci

January 2025

Animal Disease Diagnosis Division, Animal and Plant Quarantine Agency (APQA), Ministry of Agriculture, Food and Rural Affairs, Gimcheon-si, Republic of Korea.

Background: Amino acid supplements are crucial for animal health and productivity. Traditional analysis methods face limitations like complexity, long testing times and toxic reagents. Therefore, a more efficient and reliable method is needed.

View Article and Find Full Text PDF

In inertial confinement fusion experiments, hot spot mix caused by hydrodynamic instabilities is a critical performance limitation. Currently, multi-channel Ross filter pair imaging is used to quantitatively diagnose the mix mass of cryogenic hot spots driven by 100 kJ energy, but this method brings significant uncertainty. To measure the level of mix more accurately, we have developed a two-temperature model to modify the fitted bremsstrahlung spectra based on the characteristics of cryogenic implosion hot spots.

View Article and Find Full Text PDF

Adulteration and illegal trade of Saussurea lappa in the name of Inula racemosa is a major issue. Therefore, accurate and easy methods are required to control malpractice and define authenticity. The current study is focused on authenticating and defining quality control methods for I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!