A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Confining Bimetal Sites in Porous Metal Silicate Materials for Aerobic Oxidation of Phenols under Mild Conditions. | LitMetric

Confining Bimetal Sites in Porous Metal Silicate Materials for Aerobic Oxidation of Phenols under Mild Conditions.

Inorg Chem

State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou310027, P. R. China.

Published: January 2023

Inspired by the unique catalytic properties of enzymes, numerous biomimetic catalysts have been developed with the intention to realize activation of unreactive reactants under mild conditions; however, the requirement of harsh activation conditions heavily deters their practical applications. We report herein a porous metal silicate (PMS) material PMS-12 that consists of redox-active copper and vanadium metal sites, which exhibits similar catalytic behaviors of enzymes by synergistically activating different reactant molecules and generating local redox potential to facilitate electron and charge transfer, demonstrating the highest catalytic efficiency for aerobic oxidation of phenols to produce highly value-added benzoquinones under mild conditions. Therefore, this work paves a practically applicable strategy for developing high-performance heterogeneous catalysts, which could activate unreactive reactant molecules to produce highly value-added chemicals under mild conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.2c03756DOI Listing

Publication Analysis

Top Keywords

mild conditions
16
porous metal
8
metal silicate
8
aerobic oxidation
8
oxidation phenols
8
reactant molecules
8
produce highly
8
highly value-added
8
conditions
5
confining bimetal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!