The adaptation of Salmonella enterica serovar Typhimurium to stress conditions involves expression of genes within the regulon of the alternative sigma factor RpoN (σ). RpoN-dependent transcription requires an activated bacterial enhancer binding protein (bEBP) that hydrolyzes ATP to remodel the RpoN-holoenzyme-promoter complex for transcription initiation. The bEBP RtcR in Typhimurium strain 14028s is activated by genotoxic stress to direct RpoN-dependent expression of the RNA repair operon The molecular signal for RtcR activation is an oligoribonucleotide with a 3'-terminal 2',3'-cyclic phosphate. We show in Typhimurium 14028s that the molecular signal is not a direct product of nucleic acid damage, but signal generation is dependent on a RecA-controlled SOS-response pathway, specifically, induction of prophage Gifsy-1. A genome-wide mutant screen and utilization of Gifsy prophage-cured strains indicated that the nucleoid-associated protein Fis and the Gifsy-1 prophage significantly impact RtcR activation. Directed-deletion analysis and genetic mapping by transduction demonstrated that a three-gene region (STM14_3218-3220) in Gifsy-1, which is variable between Typhimurium strains, is required for RtcR activation in strain 14028s and that the absence of STM14_3218-3220 in the Gifsy-1 prophages of strains LT2 and 4/74, which renders these strains unable to activate RtcR during genotoxic stress, can be rescued by complementation in by the region encompassing STM14_3218-3220. Thus, even though RtcR and the RNA repair operon are highly conserved in Salmonella enterica serovars, RtcR-dependent expression of the RNA repair operon in Typhimurium is controlled by a variable region of a prophage present in only some strains. The transcriptional activator RtcR and the RNA repair proteins whose expression it regulates, RtcA and RtcB, are widely conserved in . In Salmonella Typhimurium 14028s, genotoxic stress activates RtcR to direct RpoN-dependent expression of the operon. This work identifies key elements of a RecA-dependent pathway that generates the signal for RtcR activation in strain 14028s. This signaling pathway requires the presence of a specific region within the prophage Gifsy-1, yet this region is absent in most other wild-type Salmonella strains. Thus, we show that the activity of a widely conserved regulatory protein can be controlled by prophages with narrow phylogenetic distributions. This work highlights an underappreciated phenomenon where bacterial physiological functions are altered due to genetic rearrangement of prophages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9879122 | PMC |
http://dx.doi.org/10.1128/jb.00262-22 | DOI Listing |
Mol Cancer Ther
January 2025
Albert Einstein College of Medicine, Bronx, NY, United States.
Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, China.
Skin fibrotic diseases are characterized by abnormal fibroblast function and excessive deposition of extracellular matrix. Our previous single-cell sequencing results identified an enriched fibroblast subcluster in skin fibrotic tissues that highly expresses the actin cross-linking cytoskeletal protein Transgelin (TAGLN), which bridges the mechanical environment of tissues and cellular metabolism. Therefore, we aimed to investigate the role of TAGLN in the pathogenesis of skin fibrosis.
View Article and Find Full Text PDFBiomater Res
January 2025
Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Republic of Korea.
Angiogenesis is mediated by vascular endothelial growth factor (VEGF), a protein that plays a key role in wound healing, inflammatory diseases, cardiovascular processes, ocular diseases, and tumor growth. Indeed, modulation of angiogenesis represents a potential approach to treating cancer and, as such, therapeutic approaches targeting VEGF and its receptors have been widely investigated as part of the broader search for curative interventions. Equally, RNA interference is a powerful tool for treating diseases, but its application as a disease treatment has been limited in part because of a lack of efficient small interfering RNA (siRNA) delivery systems.
View Article and Find Full Text PDFCell Commun Signal
January 2025
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.
View Article and Find Full Text PDFBMC Cancer
January 2025
Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
Background: Triple-negative breast cancer (TNBC) is among the most aggressive forms of breast cancer, characterized by a dismal prognosis. In the absence of drug-targetable receptors, chemotherapy remains the sole systemic treatment alternative. Recent advancements in immunotherapy, particularly immune checkpoint inhibitors (ICIs) that target programmed death 1/programmed death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4), have provided renewed optimism for the treatment of patients with TNBC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!