Infectious bursal disease virus (IBDV) is a major threat to the productivity of the poultry industry due to morbidity, mortality, and immunosuppression that exacerbates secondary infections and reduces the efficacy of vaccination programs. Field strains of IBDV have a preferred tropism for chicken B cells, the majority of which reside in the bursa of Fabricius (BF). IBDV adaptation to adherent cell culture is associated with mutations altering amino acids in the hypervariable region (HVR) of the capsid protein, which affects immunogenicity and virulence. Until recently, this has limited both the application of reverse genetics systems for engineering molecular clones, and the use of in vitro neutralization assays, to cell-culture-adapted strains of IBDV. Here, we describe the rescue of molecular clones of IBDV containing the HVR from diverse field strains, along with a neutralization assay to quantify antibody responses against the rescued viruses, both using chicken B cells. These methods are readily adaptable to any laboratory with molecular biology expertise and negate the need to obtain wild-type strains. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: A chicken B-cell rescue system for IBDV Basic Protocol 2: A chicken B-cell neutralization assay for IBDV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10108048 | PMC |
http://dx.doi.org/10.1002/cpz1.639 | DOI Listing |
Viruses
January 2025
Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil.
Domestic animals can share viral pathogens with humans, acting mainly as a bridge host. The genus hosts important zoonotic species that have emerged in urban areas worldwide. Nevertheless, the role of companion animals, such as dogs and cats, in the circulation of orthopoxviruses in urban areas remains poorly understood.
View Article and Find Full Text PDFViruses
January 2025
Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.
View Article and Find Full Text PDFViruses
January 2025
School of Public Health, Bengbu Medical University, Bengbu 233030, China.
The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.
View Article and Find Full Text PDFJapanese encephalitis (JE) is a zoonotic disease caused by the Japanese encephalitis virus (JEV), belonging to the family. Diagnosis of Japanese encephalitis (JE) based on clinical signs alone is challenging due to the high proportion of subclinical cases. The Plaque Reduction Neutralization Test (PRNT) is considered the gold standard for detecting JE-specific antibodies because of its high specificity.
View Article and Find Full Text PDFViruses
January 2025
College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China.
Porcine reproductive and respiratory syndrome virus (PRRSV), an important pathogen affecting the pig industry, is an RNA virus with high genetic diversity. In this study, 12,299 clinical samples were collected from northern China during 2021-2023 to investigate the molecular epidemiological characteristics and genetic evolution of PRRSV. All samples were screened using qRT-PCR and further analyzed through gene and whole-genome sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!