The incidence of ischemic heart disease is 2-3 times higher in diabetic patients. However, the effect of dapagliflozin on ischemia-reperfusion myocardial injury in diabetic rats has not been studied. We examined the effects of dapagliflozin on myocardial IR injury in streptozotocin-nicotinamide-induced diabetic rats. Rats were divided into four groups (= 7 in each group): control, control-dapagliflozin, diabetes, and diabetes-dapagliflozin. Dapagliflozin (1.5 mg/kg/day) was administered concomitantly in drinking water for 2 months. The hearts were perfused in a Langendorff's apparatus at 2 months and assessed before (baseline) and after myocardial IR for the following parameters: left ventricular developed pressure (LVDP), minimum and maximum rates of pressure change in the left ventricle (±d/d), endothelial nitric oxide (NO) synthase (eNOS) and inducible NO synthase (iNOS) mRNA expressions, creatine kinase MB (CK-MB) and troponin imyocardial enzyme extravasation, and lactate dehydrogenase. The recovery of LVDP and ±d/d in diabetic rats was lower than that in controls but near normal after dapagliflozin treatment. Diabetic rats had decreased eNOS expression and increased iNOS expression at baseline and after IR, whereas dapagliflozin normalized these parameters after IR. Compared with controls, cardiac NOx levels were initially lower in diabetic patients but higher after IR. Baseline MDA levels were higher in diabetic rats after IR, whereas cardiac NOx levels decreased after treatment with dapagliflozin. Dapagliflozin protects the diabetic rat heart from ischemia-reperfusion myocardial injury by regulating the expression of eNOS and iNOS and inhibiting cardiac lipid peroxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1139/cjpp-2022-0045DOI Listing

Publication Analysis

Top Keywords

diabetic rats
24
myocardial injury
12
diabetic
9
dapagliflozin
8
dapagliflozin myocardial
8
injury diabetic
8
higher diabetic
8
diabetic patients
8
ischemia-reperfusion myocardial
8
cardiac nox
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!