Tau liquid-liquid phase separation is modulated by the Ca -switched chaperone activity of the S100B protein.

J Neurochem

BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.

Published: July 2023

Aggregation of the microtubule-associated protein tau is implicated in several neurodegenerative tauopathies including Alzheimer's disease (AD). Recent studies evidenced tau liquid-liquid phase separation (LLPS) into droplets as an early event in tau pathogenesis with the potential to enhance aggregation. Tauopathies like AD are accompanied by sustained neuroinflammation and the release of alarmins at early stages of inflammatory responses encompass protective functions. The Ca -binding S100B protein is an alarmin augmented in AD that was recently implicated as a proteostasis regulator acting as a chaperone-type protein, inhibiting aggregation and toxicity through interactions of amyloidogenic clients with a regulatory surface exposed upon Ca -binding. Here we expand the regulatory functions of S100B over protein condensation phenomena by reporting its Ca -dependent activity as a modulator of tau LLPS induced by crowding agents (PEG) and metal ions (Zn ). We observe that apo S100B has a negligible effect on PEG-induced tau demixing but that Ca -bound S100B prevents demixing, resulting in a shift of the phase diagram boundary to higher crowding concentrations. Also, while incubation with apo S100B does not compromise tau LLPS, addition of Ca results in a sharp decrease in turbidity, indicating that interactions with S100B-Ca promote transition of tau to the mixed phase. Further, electrophoretic analysis and FLIM-FRET studies revealed that S100B incorporates into tau liquid droplets, suggesting an important stabilizing and chaperoning role contributing to minimize toxic tau aggregates. Resorting to Alexa488-labeled tau we observed that S100B-Ca reduces the formation of tau fluorescent droplets, without compromising liquid-like behavior and droplet fusion events. The Zn -binding properties of S100B also contribute to regulate Zn -promoted tau LLPS as droplets are decreased by Zn buffering by S100B, in addition to the Ca -triggered interactions with tau. Altogether this work uncovers the versatility of S100B as a proteostasis regulator acting on protein condensation phenomena of relevance across the neurodegeneration continuum.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.15756DOI Listing

Publication Analysis

Top Keywords

tau
14
s100b protein
12
tau llps
12
s100b
10
tau liquid-liquid
8
liquid-liquid phase
8
phase separation
8
llps droplets
8
proteostasis regulator
8
regulator acting
8

Similar Publications

Article Synopsis
  • Alzheimer's disease (AD) is characterized by various pathological features including amyloid-β deposition and tau hyperphosphorylation, with cerebral microvascular dysfunction likely playing a role in its progression.
  • Researchers investigated the microvascular responses and potassium channel activity in an AD mouse model induced by streptozotocin (STZ), using behavioral tests and cellular assays.
  • The study found that STZ-AD mice showed poorer performance on behavioral tests and had impaired microvascular responses, which were further deteriorated by exposure to soluble Aβ, indicating a potential link between microvascular dysfunction and AD pathology.
View Article and Find Full Text PDF

Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways.

Proteomics

January 2025

Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets.

View Article and Find Full Text PDF

Introduction: Neuroinflammation derived from the activation of the microglia is considered a vital pathogenic factor of Alzheimer's Disease (AD). T-006, a tetramethylpyrazine derivative, has been found to alleviate cognitive deficits via inhibiting tau expression and phosphorylation in AD transgenic mouse models. Recently, T-006 has been proven to dramatically decrease the levels of total Amyloid β (Aβ) peptide and Glial Fibrillary Acidic Protein (GFAP) and suppress the expression of ionized calcium binding adaptor molecule-1 (Iba-1) in APP/PS1 mice.

View Article and Find Full Text PDF

Background: Residual symptoms in individuals with bipolar disorder (BD) in remission are common, and they contribute to significant functional impairment and distress. The incomplete efficacy of pharmacological treatments and improvements in psychotherapeutic approaches has led to renewed interest in psychotherapy for this disorder. However, there are fewer studies addressing the same.

View Article and Find Full Text PDF

Recent advancements in the therapeutic approaches for Alzheimer's disease treatment: current and future perspective.

RSC Med Chem

December 2024

Pharmaceutical Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani Pilani Campus, Vidya Vihar Pilani 333031 RJ India +91 1596 244183 +91 1596 255 506.

Alzheimer's disease (AD) is a complex, incurable neurological condition characterized by cognitive decline, cholinergic neuron reduction, and neuronal loss. Its exact pathology remains uncertain, but multiple treatment hypotheses have emerged. The current treatments, single or combined, alleviate only symptoms and struggle to manage AD due to its multifaceted pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!