Most bio-electrochemical systems (BESs) use biotic/abiotic electrode combinations, with platinum-based abiotic electrodes being the most common. However, the non-renewability, cost, and poisonous nature of such electrode systems based on noble metals are major bottlenecks in BES commercialisation. Microbial electrosynthesis (MES), which is a sustainable energy platform that simultaneously treats wastewater and produces chemical commodities, also faces the same problem. In this study, a dual bio-catalysed MES system with a biotic anode and cathode (MES-D) was tested and compared with a biotic cathode/abiotic anode system (MES-S). Different bio-electrochemical tests revealed improved BES performance in MES-D, with a 3.9-fold improvement in current density compared to that of MES-S. Volatile fatty acid (VFA) generation also increased 3.2-, 4.1-, and 1.8-fold in MES-D compared with that in MES-S for acetate, propionate, and butyrate, respectively. The improved performance of MES-D could be attributed to the microbial metabolism at the bioanode, which generated additional electrons, as well as accumulative VFA production by both the bioanode and biocathode chambers. Microbial community analysis revealed the enrichment of electroactive bacteria such as Proteobacteria (60%), Bacteroidetes (67%), and Firmicutes + Proteobacteria + Bacteroidetes (75%) on the MES-S cathode and MES-D cathode and anode, respectively. These results signify the potential of combined bioanode/biocathode BESs such as MES for application in improving energy and chemical commodity production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.137770 | DOI Listing |
Sensors (Basel)
December 2024
Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland.
The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Abu Dhabi Maritime Academy, Abu Dhabi P.O. Box 54477, United Arab Emirates.
Electroencephalography (EEG) has emerged as a pivotal tool in both research and clinical practice due to its non-invasive nature, cost-effectiveness, and ability to provide real-time monitoring of brain activity. Wearable EEG technology opens new avenues for consumer applications, such as mental health monitoring, neurofeedback training, and brain-computer interfaces. However, there is still much to verify and re-examine regarding the functionality of these devices and the quality of the signal they capture, particularly as the field evolves rapidly.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA.
In this study, a method for determining the optimal location and orientation of an implantable piezoelectric accelerometer on the short process of the incus is presented. The accelerometer is intended to be used as a replacement for an external microphone to enable totally implantable auditory prostheses. The optimal orientation of the sensor and the best attachment point are determined based on two criteria-maximum pressure sensitivity sum and minimum loudness level sum.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
This paper presents a lens-free imaging approach utilizing an array of light sources, capable of measuring the dielectric properties of many particles simultaneously. This method employs coplanar electrodes to induce velocity changes in flowing particles through dielectrophoretic forces, allowing the inference of individual particle properties from differential velocity changes. Both positive and negative forces are detectable.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical and Computer Engineering, Bucknell University, Lewisburg, PA 17837, USA.
Micropillar array electrodes offer several advantages, such as enhanced mass transport, lower detection limits, and the potential for miniaturization, making them instrumental in the design and fabrication of electrochemical biosensors. The performance of these biosensors is influenced by electrode geometry, including parameters like shape and height, which affect surface area and overall sensitivity. In this study, we designed a microfluidic electrochemical biosensor featuring micropillar array electrodes, modeled in COMSOL Multiphysics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!