Reprogramming of microbial community in barley root endosphere and rhizosphere soil by polystyrene plastics with different particle sizes.

Sci Total Environ

Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun 130102, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: March 2023

Polystyrene plastics is an emerging pollutant affecting plant performance and soil functioning. However, little information is available on the effects of microplastics and nanoplastics on plant root endophytic and rhizospheric soil microbial communities. Here, barley plants were grown in microplastics/nanoplastics -treated soil and the diversity, composition and function of bacteria and fungi in the root and rhizosphere soil were examined. At the seedling stage, greater changes of root endophytes were found compared with rhizosphere microorganisms under the plastic treatments. Nanoplastics decreased the richness and diversity of the fungal community, while microplastics increased the diversity of the root endophytic bacterial community. The network of the bacterial community under nanoplastics showed higher vulnerability while lower complexity than that under the control. However, the bacterial community under microplastics had a relatively higher resistance than the control. For the rhizosphere microbial community, no significant effect of plastics was found on the α-diversity index at the seedling stage. In addition, the nanoplastics resulted in higher sensitivity in the relative abundance and function of rhizosphere soil microbes than root endophytic microbes at the mature stage. Treatments of polystyrene plastics with different particle sizes reprogramed the rhizosphere and root endophytic microbial communities. Different effects of microplastics and nanoplastics were found on the diversity, composition, network structure and function of bacteria and fungi, which might be due to the variation in particle sizes. These results lay a foundation for learning the effects of polystyrene plastics with different particle sizes on the microorganisms in rhizosphere soil and plant roots, which may have important implications for the adaptation of plant-microbial holobiont in polystyrene plastics-polluted soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.161420DOI Listing

Publication Analysis

Top Keywords

rhizosphere soil
16
polystyrene plastics
16
particle sizes
16
root endophytic
16
plastics particle
12
bacterial community
12
microbial community
8
effects microplastics
8
microplastics nanoplastics
8
microbial communities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!