Current vaccine formulations elicit a recall immune response against viruses by targeting epitopes on the globular head of hemagglutinin (HA), and stalk-reactive antibodies are rarely found. However, stalk-specific memory B-cell expansion after influenza vaccination is poorly understood. In this study, B cells were isolated from individuals immunized with seasonal tetravalent influenza vaccines at days 0 and 28 for H7N9 stimulation in vitro. Plasma and supernatants were collected for the analysis of anti-HA IgG using ELISA and a Luminex assay. Memory B cells were positively enriched, and total RNA was extracted for B cell receptor (BCR) H-CDR3 sequencing. All subjects displayed increased anti-H3 antibody secretion after vaccination, whereas no increase in cH5/3-reactive IgG levels was detected. The number of shared memory B-cell clones among individuals dropped dramatically from 593 to 37. Four out of 5 subjects displayed enhanced frequencies of the VH3-23 and VH3-30 genes, and one exhibited an increase in the frequency of VH1-18, which are associated with the stalk of HA. An increase in H3 stalk-specific antibodies produced by B cells stimulated with H7N9 viruses was detected after vaccination. These results demonstrated that H3 stalk-specific memory B cells can expand and secrete antibodies that bind to the stalk in vitro, although no increase in serum H3 stalk-reactive antibodies was found after vaccination, indicating potential for developing a universal vaccine strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2022.12.068DOI Listing

Publication Analysis

Top Keywords

memory b-cell
12
stalk-reactive antibodies
8
stalk-specific memory
8
memory cells
8
subjects displayed
8
memory
5
influenza vaccination-induced
4
vaccination-induced stalk-reactive
4
stalk-reactive memory
4
b-cell clone
4

Similar Publications

Development of Peptide Mimics of the Human Acetylcholine Receptor Main Immunogenic Region for Treating Myasthenia Gravis.

Int J Mol Sci

December 2024

Department of Neurology, Davis School of Medicine, University of California, 1515 Newton Court, Davis, CA 95618, USA.

We have designed and produced 39 amino acid peptide mimics of the and human acetylcholine receptors' (AChRs) main immunogenic regions (MIRs). These conformationally sensitive regions consist of three non-contiguous segments of the AChR α-subunits and are the target of 50-70% of the anti-AChR autoantibodies (Abs) in human myasthenic serum and in the serum of rats with a model of that disease, experimental autoimmune myasthenia gravis (EAMG), induced by immunizing the rats with the electric organ AChR. These MIR segments covalently joined together bind a significant fraction of the monoclonal antibodies (mAbs) raised in rats against electric organ AChR.

View Article and Find Full Text PDF

A reduced proportion of peripheral class-switched memory B cells (CSM-B cells) is presumed to indicate ineffective germinal activity. The extent that this finding corresponds to a plausible germinal center failure pathophysiology in patients not diagnosed with CVID or hyper IgM syndrome is not known. We asked if patients with low CSM-B cells are more likely to demonstrate failure to produce serum IgA and IgG than counterparts with nonreduced class-switched memory B cell levels, regardless of diagnosis.

View Article and Find Full Text PDF

Effect of Epstein-Barr Virus infection on gene regulation in immune cells of patients with Immune-Mediated Diseases.

J Autoimmun

January 2025

Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. Electronic address:

It has been known that Epstein-Barr virus (EBV) can latently infect immune cells after the initial infection, and epidemiological studies have suggested its association with the onset of immune-mediated diseases (IMDs). However, the specific impact of EBV infection on IMDs pathology remains unclear. We quantified EBV load of B cell subsets (Naïve B cells, Unswitched memory B cells, Switched memory B cells, Double negative B cells, and Plasmablasts) in IMD patients as well as healthy control (HC) using bulk RNA sequencing data of 504 donors.

View Article and Find Full Text PDF

Tissue-resident lymphocytes (TRLs) provide a front-line immunological defense mechanism uniquely placed to detect perturbations in tissue homeostasis. The heterogeneous TRL population spans the innate to adaptive immune continuum, with roles during normal physiology in homeostatic maintenance, tissue repair, pathogen detection, and rapid mounting of immune responses. TRLs are especially enriched in the liver, with every TRL subset represented, including liver-resident natural killer cells; tissue-resident memory B cells; conventional tissue-resident memory CD8, CD4, and regulatory T cells; and unconventional gamma-delta, natural killer, and mucosal-associated invariant T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!