Fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) are a type of organic compounds widely occurring in the environment that pose a potential hazard to ecosystem and public health, and thus receive extensive attention from various regulatory agencies. Here, quantitative structure-activity relationship (QSAR) models were constructed to model the ecotoxicity of FNFPAHs against two aquatic species, Daphnia magna and Oncorhynchus mykiss. According to the stringent OECD guidelines, we used genetic algorithm (GA) plus multiple linear regression (MLR) approach to establish QSAR models of the two aquatic toxicity endpoints: D. magna (48 h LC) and O. mykiss (96 h LC). The models were established using simple 2D descriptors with explicit physicochemical significance and evaluated using various internal/external validation metrics. The results clearly show that both models are statistically robust (Q = 0.7834 for D. magna and Q = 0.8162 for O. mykiss), have good internal fitness (R = 0.8159 for D. magna and R = 0.8626 for O. mykiss and external predictive ability (D. magna: R = 0.8259, Q = 0.7640∼0.8140, CCC = 0.8972; O. mykiss:R = 0.8077, Q = 0.7615∼0.7722, CCC = 0.8910). To prove the predictive performance of the developed models, an additional comparison with the standard ECOSAR tool obviously shows that our models have lower RMSE values. Subsequently, we utilized the best models to predict the true external set compounds collected from the PPDB database to further fill the toxicity data gap. In addition, consensus models (CMs) that integrate all validated individual models (IMs) were more externally predictive than IMs, of which CM2 has the best prediction performance towards the two aquatic species. Overall, the models presented here could be used to evaluate unknown FNFPAHs inside the domain of applicability (AD), thus being very important for environmental risk assessment under current regulatory frameworks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2022.106393 | DOI Listing |
Physiol Plant
January 2025
Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona, Spain.
Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.
Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.
Pharmazie
December 2024
Department of Respiratory Medicine, Fourth Affiliated Hospital, Harbin Medical University Harbin, Heilongjiang, China.
Cigarette smoke extract (CSE)-induced airway mucus hypersecretion and inflammation are prominent features of chronic obstructive pulmonary disease (COPD). As a factor associated with inflammation regulation, T cell immunoglobulin and mucin domain-1 (TIM-1) is found to be involved in various inflammatory disorders such as asthma and COPD. In this study, the GEO database provides two human COPD gene expression datasets (GSE67472, n = 62) along with the relevant controls (n = 43) for differentially expressed gene (DEG) analyses.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Engineering Physics, Tsinghua University, Beijing, China.
Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!