Stability, robustness, and containment: preparing synthetic biology for real-world deployment.

Curr Opin Biotechnol

Department of Bioengineering, University of California San Diego, La Jolla, CA, USA; Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA; Synthetic Biology Institute, University of California San Diego, La Jolla, CA, USA.

Published: February 2023

As engineered microbes are used in increasingly diverse applications across human health and bioproduction, the field of synthetic biology will need to focus on strategies that stabilize and contain the function of these populations within target environments. To this end, recent advancements have created layered sensing circuits that can compute cell survival, genetic contexts that are less susceptible to mutation, burden, and resource control circuits, and methods for population variability reduction. These tools expand the potential for real-world deployment of complex microbial systems by enhancing their environmental robustness and functional stability in the face of unpredictable host response and evolutionary pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623912PMC
http://dx.doi.org/10.1016/j.copbio.2022.102880DOI Listing

Publication Analysis

Top Keywords

synthetic biology
8
real-world deployment
8
stability robustness
4
robustness containment
4
containment preparing
4
preparing synthetic
4
biology real-world
4
deployment engineered
4
engineered microbes
4
microbes increasingly
4

Similar Publications

The origin of life on Earth remains one of the most perplexing challenges in biochemistry. While numerous bottom-up experiments under prebiotic conditions have provided valuable insights into the spontaneous chemical genesis of life, there remains a significant gap in the theoretical understanding of the complex reaction processes involved. In this study, we propose a novel approach using a roto-translationally invariant potential (RTIP) formulated with pristine Cartesian coordinates to facilitate the simulation of chemical reactions.

View Article and Find Full Text PDF

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.

View Article and Find Full Text PDF

Nicotinamide mononucleotide (NMN), one of the crucial precursors of nicotinamide adenine dinucleotide, has garnered considerable interest for its pharmacological and anti-aging effects, conferring potential health and economic benefits for humans. Lactic acid bacteria (LAB) are one of the most important probiotics, which is commonly used in the dairy industry. Due to its probiotic properties, it presents an attractive platform for food-grade NMN production.

View Article and Find Full Text PDF

Inert splint-driven oligonucleotide assembly.

Synth Biol (Oxf)

December 2024

Claret Bioscience LLC, 100 Enterprise Way, Suite A102, Scotts Valley, CA 95066, United States.

In this study, we introduce a new method for oligonucleotide fragment assembly. Unlike polymerase chain assembly and ligase chain assembly that rely on short, highly purified oligonucleotides, our method, named , uses a one-tube, splint-driven assembly reaction. Splynthesis connects standard-desalted "contig" oligos (∼150 nt in length) via shorter "splint" oligos harboring 5' and 3' blocking modifications to prevent off-target ligation and amplification events.

View Article and Find Full Text PDF

Applications in engineering biology increasingly share the need to run operations on very large numbers of biological samples. This is a direct consequence of the application of good engineering practices, the limited predictive power of current computational models and the desire to investigate very large design spaces in order to solve the hard, important problems the discipline promises to solve. Automation has been proposed as a key component for running large numbers of operations on biological samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!