Cells are not only anchored to the extracellular matrix via the focal adhesion complex, the focal adhesion complex also serves as a sensor for force transduction. How tension influences the structure of focal adhesions is not well understood. Here, we analyse the effect of tension on the location of key focal adhesion proteins, namely vinculin, paxillin and actin. We use micropatterning on gold surfaces to manipulate the cell shape, to create focal adhesions at specific cell areas, and to perform metal-induced energy transfer (MIET) measurements on the patterned cells. MIET resolves the different protein locations with respect to the gold surface with nanometer accuracy. Further, we use drugs influencing the cellular motor protein myosin or mechanosensitive ion channels to get deeper insight into focal adhesions at different tension states. We show here that in particular actin is affected by the rationally tuned force balance. Blocking mechanosensitive ion channels has a particularly high influence on the actin and focal adhesion architecture, resulting in larger focal adhesions with elevated paxillin and vinculin and strongly lowered actin stress fibres. Our results can be explained by a balance of adhesion tension with cellular tension together with ion channel-controlled focal adhesion homeostasis, where high cellular tension leads to an elevation of vinculin and actin, while high adhesion tension lowers these proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2022.213277 | DOI Listing |
Cell Mol Life Sci
December 2024
Department of Thoracic Surgery Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
Objective: Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal hepatobiliary malignancy with an increasing incidence annually. Extensive research has elucidated the existence of a reciprocal interaction between platelets and cancer cells, which promotes tumor proliferation and metastasis. This study aims to investigate the function and mechanism underlying iCCA progression driven by the interplay between platelets and tumor cells, aiming to provide novel therapeutic strategies for iCCA.
View Article and Find Full Text PDFPathol Res Pract
December 2024
Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India. Electronic address:
Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has emerged as a crucial biomarker and therapeutic target for kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and renal cell carcinoma (RCC). LncRNAs are non-coding RNAs that have more than 200 nucleotides that play a crucial role in gene regulation at the post-translational stage, transcriptional, and epigenetic levels. LncRNA MALAT1 regulates gene expression and modulates cellular functions such as proliferation, inflammation, apoptosis, and fibrosis, which are key pathophysiology of kidney diseases.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Materials Science and Engineering, Korea University, Seoul, Republic of Korea.
The native extracellular matrix is continuously remodeled to form complex interconnected network structures that reversibly regulate stem cell behaviors. Both regulation and understanding of its intricate dynamicity can help to modulate numerous cell behaviors. However, neither of these has yet been achieved due to the lack of designing and modeling such complex structures with dynamic controllability.
View Article and Find Full Text PDFUnlabelled: The recycling of integrin endocytosed during focal adhesion (FA) disassembly is critical for cell migration and contributes to the polarized formation of new FAs toward the leading edge. How this occurs is unclear. Here, we sought to identify the kinesin motor protein(s) that is involved in recycling endocytosed integrin back to the plasma membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!