A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A fuzzy fine-tuned model for COVID-19 diagnosis. | LitMetric

A fuzzy fine-tuned model for COVID-19 diagnosis.

Comput Biol Med

Faculty of Science and Engineering, University of Groningen, Netherlands. Electronic address:

Published: February 2023

The COVID-19 disease pandemic spread rapidly worldwide and caused extensive human death and financial losses. Therefore, finding accurate, accessible, and inexpensive methods for diagnosing the disease has challenged researchers. To automate the process of diagnosing COVID-19 disease through images, several strategies based on deep learning, such as transfer learning and ensemble learning, have been presented. However, these techniques cannot deal with noises and their propagation in different layers. In addition, many of the datasets already being used are imbalanced, and most techniques have used binary classification, COVID-19, from normal cases. To address these issues, we use the blind/referenceless image spatial quality evaluator to filter out inappropriate data in the dataset. In order to increase the volume and diversity of the data, we merge two datasets. This combination of two datasets allows multi-class classification between the three states of normal, COVID-19, and types of pneumonia, including bacterial and viral types. A weighted multi-class cross-entropy is used to reduce the effect of data imbalance. In addition, a fuzzy fine-tuned Xception model is applied to reduce the noise propagation in different layers. Quantitative analysis shows that our proposed model achieves 96.60% accuracy on the merged test set, which is more accurate than previously mentioned state-of-the-art methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811914PMC
http://dx.doi.org/10.1016/j.compbiomed.2022.106483DOI Listing

Publication Analysis

Top Keywords

fuzzy fine-tuned
8
covid-19 disease
8
propagation layers
8
covid-19
5
fine-tuned model
4
model covid-19
4
covid-19 diagnosis
4
diagnosis covid-19
4
disease pandemic
4
pandemic spread
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!