Background: The O6-methylguanine-DNA methyltransferase (MGMT) is a deoxyribonucleic acid (DNA) repairing enzyme that has been established as an essential clinical brain tumor biomarker for Glioblastoma Multiforme (GBM). Knowing the status of MGMT methylation biomarkers using multi-parametric MRI (mp-MRI) helps neuro-oncologists to analyze GBM and its treatment plan.
Method: The hand-crafted radiomics feature extraction of GBM's subregions, such as edema(ED), tumor core (TC), and enhancing tumor (ET) in the machine learning (ML) framework, was investigated using support vector machine(SVM), K-Nearest Neighbours (KNN), random forest (RF), LightGBM, and extreme gradient boosting (XGB). For tissue-level analysis of the promotor genes in GBM, we used the deep residual neural network (ResNet-18) with 3D architecture, followed by EfficientNet-based investigation for variants as B0 and B1. Lastly, we analyzed the fused deep learning (FDL) framework that combines ML and DL frameworks.
Result: Structural mp-MRI consisting of T1, T2, FLAIR, and T1GD having a size of 400 and 185 patients, respectively, for discovery and replication cohorts. Using the CV protocol in the ResNet-3D framework, MGMT methylation status prediction in mp-MRI gave the AUC of 0.753 (p < 0.0001) and 0.72 (p < 0.0001) for the discovery and replication cohort, respectively. We presented that the FDL is ∼7% superior to solo DL and ∼15% to solo ML.
Conclusion: The proposed study aims to provide solutions for building an efficient predictive model of MGMT for GBM patients using deep radiomics features obtained from mp-MRI with the end-to-end ResNet-18 3D and FDL imaging signatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2022.106492 | DOI Listing |
J Chem Inf Model
January 2025
Geneis (Beijing) Co. Ltd., Beijing 100102, China.
Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement.
View Article and Find Full Text PDFIET Syst Biol
January 2025
School of Computer Science and Technology, Baotou Medical College, Baotou, China.
Metal ions are significant ligands that bind to proteins and play crucial roles in cell metabolism, material transport, and signal transduction. Predicting the protein-metal ion ligand binding residues (PMILBRs) accurately is a challenging task in theoretical calculations. In this study, the authors employed fused amino acids and their derived information as feature parameters to predict PMILBRs using three classical machine learning algorithms, yielding favourable prediction results.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Department of Physics, National Institute of Technology Silchar, Silchar, Assam, India.
Red blood cells (RBCs) or Erythrocytes are essential components of the human body and they transport oxygen from the lungs to the body's tissues, regulate balance, and support the immune system. Abnormalities in RBC shapes (Poikilocytosis) and sizes (Anisocytosis) can impede oxygen-carrying capacity, leading to conditions such as anemia, thalassemia, McLeod Syndrome, liver disease, and so on. Hematologists typically spend considerable time manually examining RBC's shapes and sizes using a microscope and it is time-consuming.
View Article and Find Full Text PDFPhys Med Biol
January 2025
School of Biomedical Engineering, ShanghaiTech University, No. 1 Zhongke Road, Pudong New Area, Shanghai, Shanghai, 201210, CHINA.
Objective: This study aims to propose a dual-domain network that not only reduces scatter artifacts but also retains structure details in CBCT.
Approach: The proposed network comprises a projection-domain sub-network and an image-domain sub-network. The projection-domain sub-network utilizes a division residual network to amplify the difference between scatter signals and imaging signals, facilitating the learning of scatter signals.
Int J Med Inform
January 2025
School of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, PR China. Electronic address:
Background: In the context of routine breast cancer diagnosis, the precise discrimination between benign and malignant breast masses holds utmost significance. Notably, few prior investigations have concurrently explored the integration of imaging histology features, deep learning characteristics, and clinical parameters. The primary objective of this retrospective study was to pioneer a multimodal feature fusion model tailored for the prediction of breast tumor malignancy, harnessing the potential of ultrasound images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!