Biclustering is a powerful tool for exploratory data analysis in domains such as social networking, data reduction, and differential gene expression studies. Topological learning identifies connected regions that are difficult to find using other traditional clustering methods and produces a graphical representation. Therefore, to improve the quality of biclustering and module extraction, this work combines the adaptive resonance theory (ART)-based methods of biclustering ARTMAP (BARTMAP) and topological ART (TopoART), to produce TopoBARTMAP. The latter inherits the ability to detect topological associations while performing data reduction. The capabilities of TopoBARTMAP were benchmarked using 35 real world cancer datasets and contrasted with other (bi)clustering methods, where it showed a statistically significant improvement over the other assessed methods on ordered and shuffled data experiments. In experiments with 12 synthetic datasets, the method was observed to perform better at identifying constant, scale, shift, and shift scale type biclusters. The produced graphical representation was refined to represent gene bicluster associations and was assessed on the NCBI GSE89116 dataset containing expression levels of 39,326 probes sampled over 38 observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2022.12.010 | DOI Listing |
Neural Netw
March 2023
Applied Computational Intelligence Laboratory, Missouri University of Science and Technology, Rolla, MO, USA; National Science Foundation, ECCS Division, USA. Electronic address:
Neural Netw
September 2011
GE Global Research, Niskayuna, NY 12309, USA.
Clustering has been used extensively in the analysis of high-throughput messenger RNA (mRNA) expression profiling with microarrays. Furthermore, clustering has proven elemental in microRNA expression profiling, which demonstrates enormous promise in the areas of cancer diagnosis and treatment, gene function identification, therapy development and drug testing, and genetic regulatory network inference. However, such a practice is inherently limited due to the existence of many uncorrelated genes with respect to sample or condition clustering, or many unrelated samples or conditions with respect to gene clustering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!