A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of alloying element content on anaerobic microbiologically influenced corrosion sensitivity of stainless steels in enriched artificial seawater. | LitMetric

Effect of alloying element content on anaerobic microbiologically influenced corrosion sensitivity of stainless steels in enriched artificial seawater.

Bioelectrochemistry

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China. Electronic address:

Published: April 2023

Stainless steels (SS) are not immune to microbiologically influenced corrosion (MIC) especially in the presence of sulfate reducing bacteria (SRB). It is necessary to study the influence of alloying elements on the MIC. SRB MIC behaviors of four stainless steels (2205 SS, 316L SS, 304 SS, and 410 SS), with different alloying element compositions were compared after 14 days of incubation at 37°C in enriched artificial seawater inoculated with Desulfovibrio sp. The sessile cell sequence was 410 SS > 316L SS > 304 SS > 2205 SS, inversely proportional to Cr content. The uniform corrosion rate (based on weight loss) sequence was 410 SS > 304 SS > 316L SS > 2205 SS, which matches the pitting resistance equivalent number (PREN) sequence inversely. 410 SS with the lowest Cr and Mo contents suffered the most severe pitting, with pit depth of 35 μm and weight loss of 0.75 mg/cm (0.91 mm/a pitting rate and 25 μm/a uniform corrosion rate). The other three stainless steels with higher Cr and Mo contents suffered only metastable pits. The semiconductor characteristics and the re-passivation abilities of the passive films were found to be affected by Cr and Mo contents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2023.108367DOI Listing

Publication Analysis

Top Keywords

stainless steels
16
alloying element
8
microbiologically influenced
8
influenced corrosion
8
enriched artificial
8
artificial seawater
8
sequence 410
8
uniform corrosion
8
corrosion rate
8
weight loss
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!