Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stainless steels (SS) are not immune to microbiologically influenced corrosion (MIC) especially in the presence of sulfate reducing bacteria (SRB). It is necessary to study the influence of alloying elements on the MIC. SRB MIC behaviors of four stainless steels (2205 SS, 316L SS, 304 SS, and 410 SS), with different alloying element compositions were compared after 14 days of incubation at 37°C in enriched artificial seawater inoculated with Desulfovibrio sp. The sessile cell sequence was 410 SS > 316L SS > 304 SS > 2205 SS, inversely proportional to Cr content. The uniform corrosion rate (based on weight loss) sequence was 410 SS > 304 SS > 316L SS > 2205 SS, which matches the pitting resistance equivalent number (PREN) sequence inversely. 410 SS with the lowest Cr and Mo contents suffered the most severe pitting, with pit depth of 35 μm and weight loss of 0.75 mg/cm (0.91 mm/a pitting rate and 25 μm/a uniform corrosion rate). The other three stainless steels with higher Cr and Mo contents suffered only metastable pits. The semiconductor characteristics and the re-passivation abilities of the passive films were found to be affected by Cr and Mo contents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2023.108367 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!