A coil system generating a vertical radio-frequency (rf) field gradient (B gradient) has been built for surrounding, in a horizontal magnet, a vertical sample (object) of axial symmetry. The system comprises three coaxial loops with an overall shape either spherical or ellipsoidal. The geometry has been theoretically and experimentally devised for producing a very uniform gradient (cancellation of B derivatives from second order up to sixth order) in the central region where a vertical receiver/transmitter coil is installed. The latter is of the saddle-shaped type and is geometrically and electrically decoupled from the gradient coil system. This receiver/transmitter coil not only ensures an optimal signal reception but, in addition, is able to deliver perfectly homogeneous rf hard pulses which are mandatory in most NMR experiments. In its present design, the system delivers a uniform gradient in a limited region but could be extended at will. Its main advantages over static field gradients (B gradients) appear clearly in the case of very short transverse relaxation times. This property has been emphasized in the case of experiments leading to the measurement of diffusion coefficients. Also, this system would be suitable for chemical shift imaging (CSI) experiments as confirmed by a preliminary test experiment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2022.107362 | DOI Listing |
J Phys Chem A
January 2025
Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS - Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France.
In this work, we reexamine the Dailey-Townes model by systematically investigating the electric field gradient (EFG) in various chlorine compounds, dihalogens, and the uranyl ion (). Through the use of relativistic molecular calculations and projection analysis, we decompose the EFG expectation value in terms of atomic reference orbitals. We show how the Dailey-Townes model can be seen as an approximation to our projection analysis.
View Article and Find Full Text PDFLangmuir
January 2025
CNNFM Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, Iran.
This study investigates the impact of cell dynamics on mixing efficiency within a microfluidic droplet, emphasizing the relationship between cell motion, deformability, and resultant asymmetry in velocity and concentration fields. Simulations were conducted for droplets containing encapsulated cells at varying Peclet numbers ( = 100-800) and coupling constants ( = 0.0025, 0.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
University of Göttingen, Institute for Physical Chemistry, Tammannstraße 6, 37077,Göttingen Germany.
Rotational spectroscopy is an excellent tool for structure determination, which can provide additional insights into local electronic structure by investigating the hyperfine pattern due to nuclear quadrupole coupling. Jet-cooled molecules are good experimental benchmark targets for electronic structure calculations, as they are free of environmental effects. We report the rotational spectra of 2-chlorobenzaldehyde, 3-chlorobenzaldehyde, and 4-chlorobenzaldehyde, including a complete experimental description of the nuclear quadrupole coupling constants, which were previously not experimentally determined.
View Article and Find Full Text PDFJ Mol Model
January 2025
School of Safety Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Context: 3,4-Bis(3-nitrofurazan-4-yl) furoxan (DNTF) is a typical low-melting-point, high-energy-density compound that can serve as a cast carrier explosive. Therefore, understanding the safety of DNTF under different casting processes is of great significance for its efficient application. This study employed molecular dynamics simulations to investigate the effects of temperature and pressure on the self-diffusion characteristics and mechanical sensitivity of DNTF.
View Article and Find Full Text PDFAsia Pac J Ophthalmol (Phila)
January 2025
Rescue, Repair and Regeneration Theme, UCL Institute of Ophthalmology, London, United Kingdom. Electronic address:
Purpose: Recovery rate of rod photoreceptor sensitivity (S2 gradient) following a bleach is reduced in age-related macular degeneration (AMD) due to diminished delivery of retinol across a grossly altered Bruch's membrane. Since triterpenoid saponins are known to improve transport across Bruch's, we have assessed their possible use for reversing the visual deficits in AMD.
Design: Double-blind, placebo controlled randomised clinical trial.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!