Soluble HLA peptidome: A new resource for cancer biomarkers.

Front Oncol

Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.

Published: December 2022

Using circulating molecular biomarkers to screen for cancer and other debilitating disorders in a high-throughput and low-cost fashion is becoming increasingly attractive in medicine. One major limitation of investigating protein biomarkers in body fluids is that only one-fourth of the entire proteome can be routinely detected in these fluids. In contrast, Human Leukocyte Antigen (HLA) presents peptides from the entire proteome on the cell surface. While peptide-HLA complexes are predominantly membrane-bound, a fraction of HLA molecules is released into body fluids which is referred to as soluble HLAs (sHLAs). As such peptides bound by sHLA molecules represent the entire proteome of their cells/tissues of origin and more importantly, recent advances in mass spectrometry-based technologies have allowed for accurate determination of these peptides. In this perspective, we discuss the current understanding of sHLA-peptide complexes in the context of cancer, and their potential as a novel, relatively untapped repertoire for cancer biomarkers. We also review the currently available tools to detect and quantify these circulating biomarkers, and we discuss the challenges and future perspectives of implementing sHLA biomarkers in a clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815702PMC
http://dx.doi.org/10.3389/fonc.2022.1069635DOI Listing

Publication Analysis

Top Keywords

entire proteome
12
cancer biomarkers
8
body fluids
8
biomarkers
6
soluble hla
4
hla peptidome
4
peptidome resource
4
cancer
4
resource cancer
4
biomarkers circulating
4

Similar Publications

Development of multiple genome-wide proteome microarrays comprised wafer substrate-based chip and its scanner: An advanced high-throughput and sensitivity for molecular interactions studies.

Biosens Bioelectron

December 2024

Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. Electronic address:

Proteome microarray technology enables high-throughput analysis of protein interactions with all kinds of molecules. Wafer (6-inch) substrates offer a promising alternative to conventional glass (2.6 × 7.

View Article and Find Full Text PDF

The tick-borne encephalitis virus is a pathogen endemic to northern Europe and Asia, transmitted through bites from infected ticks. It is a member of the family and possesses a positive-sense, single-stranded RNA genome encoding a polypeptide that is processed into seven non-structural and three structural proteins, including the envelope (E) protein. The glycosylation of the E protein, involving a single N-linked glycan at position N154, plays a critical role in viral infectivity and pathogenesis.

View Article and Find Full Text PDF

N-glycome analysis of individual proteins and tissues is crucial for fundamental and applied biomedical research and medical diagnosis and plays an important role in the evaluation of the quality of biopharmaceutical and biotechnological products. The interest in this research area continues to grow annually, thereby increasing the demand for the high-throughput profiling of human blood plasma N-glycome. In response to this need, we have developed an optimized, simple, and rapid protocol for the N-glycome profiling of human plasma proteins.

View Article and Find Full Text PDF

The unique properties of per- and polyfluoroalkyl substances (PFAS) have driven their pervasive use in different industrial applications, leading to substantial environmental pollution and raising critical concerns about the long-term impacts on ecosystem and human health. To tackle the global challenge of PFAS contamination, there is an urgent need for sustainable and efficient remediation strategies. Phytoremediation has emerged as a promising eco-friendly approach with the potential to mitigate the spread of these persistent contaminants.

View Article and Find Full Text PDF

Progress in understanding the underlying mechanisms of muscular dystrophies is hindered by the lack of pathophysiologically relevant in vitro models. Here, an entirely scaffold-free anchored cell sheet engineering platform is used to create patient-specific three-dimensional (3D) skeletal muscle in vitro models. This approach effectively replicates mature muscle phenotypes and tissue- and disease-specific extracellular matric (ECM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!