In recent years, the leaf beetle has broken out in the northern grasslands of Inner Mongolia, its management still mainly depends on chemical control using traditional insecticides or with novel action. The study was aim to identify mutation locus associated with resistance to diamide insecticides in field population of , to provide a reference for rational selection of insecticides and to avoid the rapid resistance development to diamide insecticides. We cloned the full length of the ryanodine receptor gene of (), constructed 3D model and transmembrane regions by homologous modeling based on deduced amino acid sequence. Two potential mutation loci (Gly4911Glu and Ile4754Met) and allelic mutation frequencies were detected in individuals of . In addition, their binding patterns to two diamide insecticides (chlorantraniliprole, cyantraniliprole) were analyzed separately using a molecular docking method. The full-length cDNA sequence of (GenBank accession number: OP828593) was obtained by splicing and assembling, which is 15,399 bp in length and encodes 5,133 amino acids. The amino acid similarity of with that of other Coleopteran insects were 86.70%-91.33%, which possessed the typical structural characteristics. An individual resistance allelic mutation frequency test on fifty field leaf beetles has identified 12% and 32% heterozygous individuals at two potential mutation loci Gly4911Glu and Ile4754Met, respectively. The affinity of the I4754M mutant model of for chlorantraniliprole and cyantraniliprole was not significantly different from that of the wild type, and all had non-covalent interactions such as hydrogen bonding, hydrophobic interactions and π-cation interactions. However, the G4911E mutant model showed reduced affinity and reduced mode of action with two diamide insecticides, thus affecting the binding stability of the ryanodine receptor to the diamide insecticides. In conclusion, the G4911E mutation in may be a potential mechanism for the development of resistance to diamide insecticides on and should be a key concern for resistance risk assessment and reasonable applications of diamide insecticides for control in future. Moreover, this study could provide a reference for ryanodine receptor structure-based insecticides design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9815114PMC
http://dx.doi.org/10.3389/fphys.2022.1107045DOI Listing

Publication Analysis

Top Keywords

diamide insecticides
32
ryanodine receptor
16
insecticides
11
diamide
8
resistance diamide
8
provide reference
8
amino acid
8
potential mutation
8
mutation loci
8
loci gly4911glu
8

Similar Publications

Computational new approach methods guide focused testing and enhance understanding of chlorantraniliprole toxicity across species.

Environ Toxicol Chem

January 2025

Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, MN, United States.

Diamide insecticides, specifically chlorantraniliprole (CHL), have been rising in popularity over the past decade, becoming one of the most widely used insecticide classes globally. These insecticides target the ryanodine receptor (RyR), primarily for control of lepidopteran agricultural pests. Field studies have revealed that some lepidopteran species have developed mutations where a methionine in a particular position (e.

View Article and Find Full Text PDF

Background: Increasing the diversity of lead compounds has been shown to enhance the efficacy of diamide insecticides. Fifty novel compounds were precisely designed and synthesized utilizing fragment-based assembly and virtual screening coupling.

Results: The median lethal concentration (LC) values of compounds X-30 and X-40 against Mythimna separata were 0.

View Article and Find Full Text PDF

Cyclaniliprole, a type of the third-generation anthranilic diamide insecticide, was mainly used for management of various pests. Myzus persicae (Hemiptera: Aphididae), known as the peach-potato aphid, is an economically essential pest with worldwide distribution. However, the risk assessment of cyclaniliprole in M.

View Article and Find Full Text PDF

The selection of an appropriate and targeted crop protection technology for winter oilseed rape is crucial for the economic production of this crop. Insecticides belonging to the group of diamides and butenolides are available as seed treatments for winter oilseed rape and serve as effective tools for chemical crop protection. The objective of this study was to determine the multi-directional applicability of the active ingredients cyantraniliprole and flupyradifurone.

View Article and Find Full Text PDF

Optimized Metolachlor, Epoxiconazole and Chlorantraniliprole Mixture Analysis for Aquatic Toxicity Testing Using UHPLC-MS/MS.

Bull Environ Contam Toxicol

January 2025

Centro de Investigaciones en Bioquímica Clínica e Inmunología-CIBICI, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba, Haya de La Torre Esq., Medina Allende, 5000, Córdoba, Argentina.

The co-occurrence of pesticides in aquatic ecosystems highlights the need for studies investigating their potential toxicity as mixtures to the aquatic biota. Well-designed studies are essential to assess the presence and toxicity of relevant pesticide mixtures, particularly those such as the chloroacetamide herbicide metolachlor (MET), the triazole fungicide epoxiconazole (EP) and the diamide anthranilic insecticide chlorantraniliprole (CAP), which have not been previously tested, and whose co-occurrence is possible in waters close to cultivated areas. A solid phase extraction ultra-performance liquid chromatography-tandem quadrupole mass spectrometry method was developed to quantify equivalent toxicity concentrations for CAP, EP, and MET in artificial freshwater during acute toxicity tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!