A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated photographic analysis of inferior oblique overaction based on deep learning. | LitMetric

Automated photographic analysis of inferior oblique overaction based on deep learning.

Quant Imaging Med Surg

Eye Center, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.

Published: January 2023

Background: Inferior oblique overaction (IOOA) is a common ocular motility disorder. This study aimed to propose a novel deep learning-based approach to automatically evaluate the amount of IOOA.

Methods: This prospective study included 106 eyes of 72 consecutive patients attending the strabismus clinic in a tertiary referral hospital. Patients were eligible for inclusion if they were diagnosed with IOOA. IOOA was clinically graded from +1 to +4. Based on photograph in the adducted position, the height difference between the inferior corneal limbus of both eyes was manually measured using ImageJ and automatically measured by our deep learning-based image analysis system with human supervision. Correlation coefficients, Bland-Altman plots and mean absolute deviation (MAD) were analyzed between two different measurements of evaluating IOOA.

Results: There were significant correlations between automated photographic measurements and clinical gradings (Kendall's tau: 0.721; 95% confidence interval: 0.652 to 0.779; P<0.001), between automated and manual photographic measurements [intraclass correlation coefficients (ICCs): 0.975; 95% confidence interval: 0.963 to 0.983; P<0.001], and between two-repeated automated photographic measurements (ICCs: 0.998; 95% confidence interval: 0.997 to 0.999; P<0.001). The biases and MADs were 0.10 [95% limits of agreement (LoA): -0.45 to 0.64] mm and 0.26±0.14 mm between automated and manual photographic measurements, and 0.01 (95% LoA: -0.14 to 0.16) mm and 0.07±0.04 mm between two-repeated automated photographic measurements, respectively.

Conclusions: The automated photographic measurements of IOOA using deep learning technique were in excellent agreement with manual photographic measurements and clinical gradings. This new approach allows objective, accurate and repeatable measurement of IOOA and could be easily implemented in clinical practice using only photographs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816726PMC
http://dx.doi.org/10.21037/qims-22-467DOI Listing

Publication Analysis

Top Keywords

automated photographic
8
inferior oblique
8
oblique overaction
8
deep learning-based
8
photographic analysis
4
analysis inferior
4
overaction based
4
based deep
4
deep learning
4
learning background
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!