Introduction: As a representation of the gut microbiota, fecal and cecal samples are most often used in human and animal studies, including in non-alcoholic fatty liver disease (NAFLD) research. However, due to the regional structure and function of intestinal microbiota, whether it is representative to use cecal or fecal contents to study intestinal microbiota in the study of NAFLD remains to be shown.

Methods: The NAFLD mouse model was established by high-fat diet induction, and the contents of the jejunum, ileum, cecum, and colon (formed fecal balls) were collected for 16S rRNA gene analysis.

Results: Compared with normal mice, the diversity and the relative abundance of major bacteria and functional genes of the ileum, cecum and colon were significantly changed, but not in the jejunum. In NAFLD mice, the variation characteristics of microbiota in the cecum and colon (feces) were similar. However, the variation characteristics of intestinal microbiota in the ileum and large intestine segments (cecum and colon) were quite different.

Discussion: Therefore, the study results of cecal and colonic (fecal) microbiota cannot completely represent the results of jejunal and ileal microbiota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813237PMC
http://dx.doi.org/10.3389/fmicb.2022.1051200DOI Listing

Publication Analysis

Top Keywords

intestinal microbiota
16
cecum colon
16
characteristics intestinal
8
microbiota
8
non-alcoholic fatty
8
fatty liver
8
high-fat diet
8
ileum cecum
8
variation characteristics
8
microbiota c57bl/6
4

Similar Publications

Effect of commercial prescription diets containing prebiotics on clinical signs and fecal microbiome in dogs with intestinal disease.

Pol J Vet Sci

December 2024

School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan.

Diet has emerged as a key modulator of the gut microbiota, offering a potential strategy for disease prevention and management. This study investigated the effects of the Prescription Diet Gastrointestinal Biome (GB) on 7 healthy dogs and 16 dogs with chronic gastrointestinal diseases (GI dogs). Our investigation monitored changes in body weight and the Canine Inflammatory Bowel Disease Activity Index (CIBDAI) in 16 GI dogs fed a GB diet.

View Article and Find Full Text PDF

Research progress of gut microbiome and diabetic nephropathy.

Front Med (Lausanne)

December 2024

Department of Nephrology, Urology & Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.

Diabetic nephropathy is an important complication of diabetic microvascular injury, and it is also an important cause of end-stage renal disease. Its high prevalence and disability rate significantly impacts patients' quality of life while imposing substantial social and economic burdens. Gut microbiota affects host metabolism, multiple organ functions, and regulates host health throughout the life cycle.

View Article and Find Full Text PDF

Editorial: Endocrine disruptors in gut endocrinology.

Front Endocrinol (Lausanne)

December 2024

Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari, Bari, Italy.

View Article and Find Full Text PDF

In contemporary microbial research, the exploration of interactions between microorganisms and multicellular hosts constitutes a burgeoning field. The gut microbiota is increasingly acknowledged as a pivotal contributor to various disorders within the endocrine system, encompassing conditions such as diabetes and thyroid diseases. A surge in research activities has been witnessed in recent years, elucidating the intricate interplay between the gut microbiota and disorders of the endocrine system.

View Article and Find Full Text PDF

The microbiota-gut-brain axis is a pivotal medium of crosstalk between the central nervous system (CNS) and the gastrointestinal tract. It is an intricate network of synergistic molecular pathways that exert their effects far beyond their local vicinity and even affect the systemic functioning of the body. The current review explores the involvement of the gut-brain axis (GBA) in the functioning of the nervous system, with a special emphasis on the neurodegeneration, cognitive decline, and neuroinflammation that occur in Alzheimer's disease (AD) and Parkinson's disease (PD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!