On Spencer's displacement function approach for problems in second-order elasticity theory.

Math Mech Solids

Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, QC, Canada.

Published: January 2023

The paper describes the displacement function approach first proposed by AJM Spencer for the formulation and solution of problems in second-order elasticity theory. The displacement function approach for the second-order problem results in a single inhomogeneous partial differential equation of the form , where is Stokes' operator and depends only on the first-order or the classical elasticity solution. The second-order isotropic stress is governed by an inhomogeneous partial differential equation of the form , where is Laplace's operator and depends only on the first-order or classical elasticity solution. The introduction of the displacement function enables the evaluation of the second-order displacement field purely through its derivatives and avoids the introduction of arbitrary rigid body terms normally associated with formulations where the strains need to be integrated. In principle, the displacement function approach can be systematically applied to examine higher-order effects, but such formulations entail considerable algebraic manipulations, which can be facilitated through the use of computer-aided symbolic mathematical operations. The paper describes the advances that have been made in the application of Spencer's fundamental contribution and applies it to the solution of Kelvin's concentrated force, Love's doublet, and Boussinesq's problems in second-order elasticity theory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810831PMC
http://dx.doi.org/10.1177/10812865221096771DOI Listing

Publication Analysis

Top Keywords

displacement function
20
function approach
16
problems second-order
12
second-order elasticity
12
elasticity theory
12
paper describes
8
inhomogeneous partial
8
partial differential
8
differential equation
8
equation form
8

Similar Publications

Background: To analyze the effects of the positioning of a bolt in the femoral neck system (FNS) on the short-term outcomes of middle-aged and young adults with displaced femoral neck fractures (FNFs).

Methods: This was a retrospective study involving 114 middle-aged and young adults with displaced FNFs who were surgically treated with internal fixation via the FNS in the Department of Orthopedics, Suzhou Municipal Hospital, from December 2019 to January 2023. The degree of deviation of the central axis of the femoral head and neck from the tip of the bolt (W), the tip‒apex distance (TAD) and the length of femoral neck shortening (LFNS) were measured on postoperative X-ray and computed tomography (CT) scan images.

View Article and Find Full Text PDF

A benzoxazolyl urea inhibits VraS and enhances antimicrobials against vancomycin intermediate-resistant Staphylococcus aureus.

Bioorg Med Chem Lett

January 2025

Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA; Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA. Electronic address:

Vancomycin intermediate-resistant Staphylococcus aureus (VISA) is a pathogen of concern. VraS, a histidine kinase, facilitates the VISA phenotype. Here, we reveal a benzoxazolyl urea (chemical 1) that directly inhibits VraS and enhances vancomycin to below the clinical breakpoint against an archetypal VISA strain, Mu50.

View Article and Find Full Text PDF

A hyperelastic torque-reversal mechanism for soft joints with compression-responsive transient bistability.

Sci Robot

January 2025

Biorobotics Laboratory, Soft Robotics Research Center, Institute of Advanced Machines and Design, Department of Mechanical Engineering, Institute of Engineering, Seoul National University, Seoul, Republic of Korea.

Snap-through, a rapid transition of a system from an equilibrium state to a nonadjacent equilibrium state, is a valuable design element of soft devices for converting a monolithic stimulus into systematic responses with impulsive motions. A common way to benefit from snap-through is to embody it within structures and materials, such as bistable structures. Torque-reversal mechanisms discovered in nature, which harness snap-through instability via muscular forces, may have comparative advantages.

View Article and Find Full Text PDF

Analytical Model for Atomic Relaxation in Twisted Moiré Materials.

Phys Rev Lett

December 2024

National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575.

By virtue of being atomically thin, the electronic properties of heterostructures built from two-dimensional materials are strongly influenced by atomic relaxation. The atomic layers behave as flexible membranes rather than rigid crystals. Here we develop an analytical theory of lattice relaxation in twisted moiré materials.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!