Fast, efficient, and accurate dielectric screening using a local real-space approach.

Phys Rev B

Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

Published: June 2022

Various many-body perturbation theory techniques for calculating electron behavior rely on , the screened Coulomb interaction. Computing requires complete knowledge of the dielectric response of the electronic system, and the fidelity of the calculated dielectric response limits the reliability of predicted electronic and structural properties. As a simplification, calculations often begin with the random-phase approximation (RPA). However, even RPA calculations are costly and scale poorly, typically as ( representing the system size). A local approach has been shown to be efficient while maintaining accuracy for screening core-level excitations [Ultramicroscopy , 986 (2006)]. We extend this method to valence-level excitations. We present improvements to the accuracy and execution of this scheme, including reconstruction of the all-electron character of the pseudopotential-based wave functions, improved log scaling, and a parallelized implementation. We discuss applications to Bethe-Salpeter equation calculations of core and valence spectroscopies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813915PMC
http://dx.doi.org/10.1103/PhysRevB.103.245143DOI Listing

Publication Analysis

Top Keywords

dielectric response
8
fast efficient
4
efficient accurate
4
accurate dielectric
4
dielectric screening
4
screening local
4
local real-space
4
real-space approach
4
approach many-body
4
many-body perturbation
4

Similar Publications

Anionic modulation induces molecular polarity in a three-component crown ether system.

Dalton Trans

January 2025

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, People's Republic of China.

Three-component crown ether phase change materials are characterized by a structural phase change in response to external stimuli such as temperature and electric or magnetic fields, resulting in significant changes in physical properties. In this work, we designed and synthesized two novel host-guest crown ether molecules [(PTFMA)(15-crown-5)ClO] (1) and [(PTFMA)(15-crown-5)PF] (2), through the reaction of -trifluoromethylaniline (PTFMA) with 15-crown-5 in perchloric acid or hexafluorophosphoric acid aqueous solution. Compound 1 undergoes a structural change from the non-centrosymmetric space group (2) to the centrosymmetric space group (2/) with increasing temperature.

View Article and Find Full Text PDF

In response to the demand for epoxy-based dielectric substrates with low dielectric loss in high-frequency and high-speed signal transmission applications, this study presents a surface-engineered filler material. Utilizing ball-milling, surface-modified aluminum flakes containing organic (stearic acid) and inorganic (aluminum oxide) coatings are developed. Incorporation of the filler into the epoxy matrix results in a significant increase in dielectric permittivity, by nearly 5 times (from 4.

View Article and Find Full Text PDF

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

As a graphene-like material, h-BN has stimulated great research interest recently due to its potential application for next-generation electronic devices. Herein, a systematic theoretical investigation of electronic structures and optical properties of C-doped and Cu-Al co-doped h-BN is carried out by the first-principles calculations. Firstly, two different C-doped h-BN structures for the para-position and ortho-position are constructed.

View Article and Find Full Text PDF

Ferroelectric/Electric-Double-Layer-Modulated Synaptic Thin Film Transistors toward an Artificial Tactile Perception System.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China.

Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!