Approximately 30% of the veterans who fought in the 1991 Gulf War (GW) suffer from a disease called Gulf War Illness (GWI), which encompasses a constellation of symptoms including cognitive deficits. A coalescence of evidence indicates that GWI was caused by low-level exposure to organophosphate pesticides and nerve agents in combination with physical stressors of the battlefield. Until recently, progress on mechanisms and therapy had been limited to rodent-based models. Using peripheral blood mononuclear cells from veterans with or without GWI, we recently developed a bank of human induced pluripotent stem cells that can be differentiated into a variety of cellular fates. With these cells, we have now generated cerebral organoids, which are three-dimensional multicellular structures that resemble the human brain. We established organoid cultures from two GW veterans, one with GWI and one without. Immunohistochemical analyses indicate that these organoids, when treated with a GW toxicant regimen consisting of the organophosphate diisopropyl fluorophosphate (a sarin analog) and cortisol (to mimic battlefield stress), display multiple indicators consistent with cognitive deficits, including increased astrocytic reactivity, enhanced phosphorylation of tau proteins, decreased microtubule stability, and impaired neurogenesis. Interestingly, some of these phenotypes were more pronounced in the organoids derived from the veteran with GWI, potentially reflecting a stronger response to the toxicants in some individuals compared to others. These results suggest that veteran-derived human cerebral organoids not only can be used as an innovative human model to uncover the cellular responses to GW toxicants but can also serve as a platform for developing personalized medicine approaches for the veterans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816432PMC
http://dx.doi.org/10.3389/fncel.2022.979652DOI Listing

Publication Analysis

Top Keywords

cerebral organoids
12
gulf war
12
war illness
8
cognitive deficits
8
veterans gwi
8
organoids
5
gwi
5
veteran-derived cerebral
4
organoids display
4
display multifaceted
4

Similar Publications

Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification.

View Article and Find Full Text PDF

Brain-targeting drug delivery systems: The state of the art in treatment of glioblastoma.

Mater Today Bio

February 2025

Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.

Glioblastoma (GBM) is the most prevalent primary malignant brain tumor, characterized by a high mortality rate and a poor prognosis. The blood-brain barrier (BBB) and the blood-tumor barrier (BTB) present significant obstacles to the efficacy of tumor-targeted pharmacotherapy, thereby impeding the therapeutic potential of numerous candidate drugs. Targeting delivery of adequate doses of drug across the BBB to treat GBM has become a prominent research area in recent years.

View Article and Find Full Text PDF

Automated scoring to assess RAD51-mediated homologous recombination in ovarian patient-derived tumor organoids.

Lab Invest

January 2025

Université de Caen Normandie, INSERM U1086 ANTICIPE, Caen, France; UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France; Université de Caen Normandie, US PLATON- ORGAPRED core facility, Caen, France; Université de Caen Normandie, US PLATON, UNICANCER, Comprehensive Cancer Center François Baclesse- Biological Resource Center 'OvaRessources', Caen, France. Electronic address:

PARP inhibitors (PARPi) have been shown to improve progression-free survival, particularly in homologous recombination deficient (HRD) ovarian cancers. Identifying patients eligible to PARPi is currently based on next-generation sequencing (NGS), but the persistence of genomic scars in tumors after restoration of HR or epigenetic changes can be a limitation. Functional assays could thus be used to improve this profiling and faithfully identify HRD tumors.

View Article and Find Full Text PDF

In vitro models play a pivotal role in advancing our understanding of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's disease (PD and AD). Traditionally, 2D cell cultures have been instrumental in elucidating the cellular mechanisms underlying these diseases. Cultured cells derived from patients or animal models provide valuable insights into the pathological processes at the cellular level.

View Article and Find Full Text PDF

Proteomics accelerates diagnosis and research of muscular diseases by enabling the robust analysis of proteins relevant for the manifestation of neuromuscular diseases in the following aspects: (i) evaluation of the effect of genetic variants on the corresponding protein, (ii) prediction of the underlying genetic defect based on the proteomic signature of muscle biopsies, (iii) analysis of pathophysiologies underlying different entities of muscular diseases, key for the definition of new intervention concepts, and (iv) patient stratification according to biochemical fingerprints as well as (v) monitoring the success of therapeutic interventions. This review presents-also through exemplary case studies-the various advantages of mass proteomics in the investigation of genetic muscle diseases, discusses technical limitations, and provides an outlook on possible future application concepts. Hence, proteomics is an excellent large-scale analytical tool for the diagnostic workup of (hereditary) muscle diseases and warrants systematic profiling of underlying pathophysiological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!