BaAlO/CaAlO/CaAlO/CaAlO:x% Sm (0 ≤ x ≤ 1.9) (hereafter called BCCC:x% Sm) nanophosphors were successfully prepared by citrate sol-gel method. The structure, morphology and photoluminescence properties of the prepared nanophosphors were investigated. X-ray diffraction (XRD) indicated that the nanophosphors composed of the mixed phases of the hexagonal (CaAlO, BaAlO) and cubic (CaAlO, CaAlO) crystal structures. Scanning electron microscopy (SEM) revealed that doping influences the morphology of the prepared nanophosphor. High resolution transmission electron microscopy (HR-TEM) confirmed that the prepared phosphor particles are in the nanoscale range. Photoluminescence (PL) results showed emission peaks originating from the intrinsic defects within the BaAlO, CaAlO and Sm transitions. The optimum luminescence intensity was found at 0.7% Sm. Commission Internationale de l'éclairage (CIE) shows that the Sm doped samples emitted the orange colour.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9813756 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e12573 | DOI Listing |
iScience
January 2025
Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China.
In recent years, photocatalytic materials with a nanofiber-like morphology have garnered a surge of academic attention due to their distinctive properties, including an expansive specific surface area, a considerable high aspect ratio, a pronounced resistance to agglomeration, superior electron survivability, and robust surface activity. Consequently, the synthesis of photocatalytic nanofiber materials through various methodologies has drawn considerable attention. The electrospinning technique has been established as a prevalent method for fabricating nanofiber-structured materials, owing to its advantageous properties, including the ability for mass production and the assurance of high continuity.
View Article and Find Full Text PDFPhytoKeys
January 2025
Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdańsk, Poland University of Gdansk Gdańsk Poland.
The genus includes some of the most important ornamental plants. The aim of this work was to study the seed morphology of species from East Kazakhstan, including seed coat structure. An analysis focused on five taxa from various natural environmental conditions.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Material Science and Art Design, Inner Mongolia Agricultural University Hohhot 010018 China
Corn stover was used as raw material, and purification, oxalic acid treatment, oxidation treatment, and ultrasonic treatment were performed to realize the preparation of corn stover nanocellulose with low energy consumption. The effects of oxalic acid concentration (1 wt%, 2 wt%, 3 wt%, 4 wt%, and 5 wt%) on the purity, morphology, crystalline structure and oxidation efficiency of corn stover cellulose during oxalic acid treatment were investigated. The controllable preparation of corn stover nanocellulose was achieved by changing the parameter conditions of ultrasonic treatment.
View Article and Find Full Text PDFInt J Clin Pediatr Dent
December 2024
Department of Prosthodontics, Crown & Bridge and Implantology, Government College of Dentistry, Indore, Madhya Pradesh, India.
Aims And Background: The study of the morphology of soft tissues as well as hard tissues of the orofacial region holds prime importance. A very less information is known about the lips (soft tissues) and maxillo-mandibular arches (hard tissue structures) in primary dentition. Henceforth, there is a need to classify, find the prevalence and correlation of various lip shapes, and arch forms in primary dentition.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
Spermatogenesis in Lepidoptera holds significant importance due to its unique process of dichotomous spermatogenesis, yielding eupyrene and apyrene spermatozoa through a complex molecular mechanism. While E3 ubiquitin ligases are known to play vital roles in spermatogenesis across various processes, their functions in dichotomous spermatogenesis remain less known. We utilized the RNAi, biochemical and microscopic procedures to unravel the function of in dichotomous spermatogenesis of adult .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!