Background: Polycystic ovarian syndrome (PCOS) is a common condition of hyperandrogenism, chronic ovulation, and polycystic ovaries in females during the reproduction and maturation of the ovum. Although PCOS has been associated with metabolic disorders, including type 2 diabetes (T2D), obesity (OBE), and cardiovascular disease (CVD), Causal connection and molecular features are still unknown.

Purpose: Therefore, we investigated the shared common differentially expressed genes (DEGs), pathways, and networks of associated proteins in PCOS and metabolic diseases with therapeutic intervention.

Methods: We have used a bioinformatics pipeline to analyze transcriptome data for the polycystic ovarian syndrome (PCOS), type 2 diabetes (T2D), obesity (OBE), and cardiovascular diseases (CVD) in female patients. Then we employed gene-disease association network, gene ontology (GO) and signaling pathway analysis, selection of hub genes from protein-protein interaction (PPI) network, molecular docking, and gold benchmarking approach to screen potential hub proteins.

Result: We discovered 2225 DEGs in PCOS patients relative to healthy controls and 34, 91, and 205 significant DEGs with T2D, Obesity, and CVD, respectively. Gene Ontology analysis revealed several significant shared and metabolic pathways from signaling pathway analysis. Furthermore, we identified ten potential hub proteins from PPI analysis that may serve as a therapeutic intervention in the future. Finally, we targeted one significant hub protein, IGF2R (PDB ID: 2V5O), out of ten hub proteins based on the Maximal clique centrality (MCC) algorithm and literature review for molecular docking study. Enzastaurin (-12.5), Kaempferol (-9.1), Quercetin (-9.0), and Coumestrol (-8.9) kcal/mol showed higher binding affinity in the molecular docking approach than 19 drug compounds. We have also found that the selected four compounds displayed favorable ADMET properties compared to the native ligand.

Conclusion: Our research findings identified a shared molecular etiology between PCOS and metabolic diseases that may suggest new therapeutic targets and warrants future experimental validation of the key targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9816984PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e12480DOI Listing

Publication Analysis

Top Keywords

t2d obesity
12
molecular docking
12
metabolic disorders
8
polycystic ovarian
8
ovarian syndrome
8
syndrome pcos
8
type diabetes
8
diabetes t2d
8
obesity obe
8
obe cardiovascular
8

Similar Publications

The use of incretin analogues has emerged in recent years as an effective approach to achieve both enhanced insulin secretion and weight loss in type 2 diabetes (T2D) patients. Agonists which bind and stimulate multiple receptors have shown particular promise. However, off target effects, including nausea and diarrhoea, remain a complication of using these agents, and modified versions with optimized pharmacological profiles and/or biased signaling at the cognate receptors are increasingly sought.

View Article and Find Full Text PDF

Obesity-associated inflammation is characterized by macrophage infiltration into peripheral tissues, contributing to the progression of prediabetes and type 2 diabetes (T2D). The enzyme 12-lipoxygenase (12-LOX) catalyzes the formation of pro-inflammatory eicosanoids and is known to promote the migration of macrophages, yet its role in obesity-associated inflammation remains incompletely understood. Furthermore, differences between mouse and human orthologs of 12-LOX have limited efforts to study existing pharmacologic inhibitors of 12-LOX.

View Article and Find Full Text PDF

To date, there are limited studies describing the use of glucose-lowering medications (GLMs) in adult kidney transplant recipients (KTRs), and the uptake of sodium glucose cotransporter-2 inhibitors (SGLT2is) and glucagon-like peptide-1 receptor agonists (GLP1RAs). Thus, we aimed to evaluate the use of GLMs, including SGLT2i and GLP1RA, among adult KTRs with type 2 diabetes (T2D). This is an ecologic study of adult KTR with T2D.

View Article and Find Full Text PDF

The Role of microRNA-22 in Metabolism.

Int J Mol Sci

January 2025

Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark.

microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a heterogeneous disease influenced by both genetic and environmental factors. Recent studies suggest that T2D subtypes may exhibit distinct gene expression profiles. In this study, we aimed to identify T2D cluster-specific miRNA expression signatures for the previously reported five clinical subtypes that characterize the underlying pathophysiology of long-standing T2D: severe insulin-resistant diabetes (SIRD), severe insulin-deficient diabetes (SIDD), mild age-related diabetes (MARD), mild obesity-related diabetes (MOD), and mild early-onset diabetes (MEOD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!