The objective of this work was to use transcriptional profiling to assess the biological activity of structurally related chemicals to define their biological similarity and with that, substantiate the validity of a read-across approach usable in risk assessment. Two case studies are presented, one with 4 short alkyl chain parabens: methyl (MP), ethyl (EP), butyl (BP), and propylparaben (PP), as well as their main metabolite, p-hydroxybenzoic acid (pHBA) with the assumption that propylparaben was the target chemical; and a second one with caffeine and its main metabolites theophylline, theobromine and paraxanthine where CA was the target chemical. The comprehensive transcriptional response of MCF7, HepG2, A549 and ICell cardiomyocytes was evaluated (TempO-Seq) after exposure to vehicle-control, each paraben or pHBA, CA or its metabolites, at 3 non-cytotoxic concentrations, for 6 h. Differentially expressed genes (FDR ≥0.05, and fold change ±1.2≥) were identified for each chemical, at each concentration, and used to determine similarities. Each of the chemicals is able to elicit changes in the expression of a number of genes, as compared to controls. Importantly, the transcriptional profile elicited by each of the parabens shares a high degree of similarity across the group. The highest number of genes commonly affected was between butylparaben and PP. The transcriptional profile of the parabens is similar to the one elicited by estrogen receptor agonists, with BP being the closest structural and biological analogue for PP. In the CA case, the transcriptional profile elicited of all four methylxanthines had a high degree of similarity across the cell types, with CA and theophylline being the most active. The most robust response was obtained in the cardiomyocytes with the highest transcriptional profile similarity between CA and TP. The transcriptional profile of the methylxanthines is similar to the one elicited by inhibitors of phosphatidylinositol 3-kinase as well as other kinase inhibitors. Overall, our results support the approach of incorporating transcriptional profiling in well-designed tests as one robust stream of data to support biological similarity driven read-across procedures and strengthening the traditional structure-based approaches useful in risk assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811170PMC
http://dx.doi.org/10.3389/ftox.2022.1082222DOI Listing

Publication Analysis

Top Keywords

transcriptional profile
20
transcriptional profiling
12
transcriptional
9
define biological
8
biological activity
8
biological similarity
8
risk assessment
8
target chemical
8
number genes
8
profile elicited
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!