Geo-sensory time series, such as the air quality and water distribution, are collected from numerous sensors at different geospatial locations in the same time interval. Each sensor monitors multiple parameters and generates multivariate time series. These time series change over time and vary geographically; hence, geo-sensory time series contain multi-scale spatial-temporal correlations, namely inter-sensor spatial-temporal correlations and intra-sensor spatial-temporal correlations. To capture spatial-temporal correlations, although various deep learning models have been developed, few of the models focus on capturing both correlations. To solve this problem, we propose simultaneously capture the inter- and intra-sensor spatial-temporal correlations by designing a joint network of non-linear graph attention and temporal attraction force(J-NGT) consisting two graph attention mechanisms. The non-linear graph attention mechanism can characterize node affinities for adaptively selecting the relevant exogenous series and relevant sensor series. The temporal attraction force mechanism can weigh the effect of past values on current values to represent the temporal correlation. To prove the superiority and effectiveness of our model, we evaluate our model in three real-world datasets from different fields. Experimental results show that our model can achieve better prediction performance than eight state-of-the-art models, including statistical models, machine learning models, and deep learning models. Furthermore, we conducted experiments to capture inter- and intra-sensor spatial-temporal correlations. Experimental results indicate that our model significantly improves performance by capturing both inter- and intra-sensor spatial-temporal correlations. This fully shows that our model has a greater advantage in geo-sensory time series prediction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9803260 | PMC |
http://dx.doi.org/10.1007/s10489-022-04412-4 | DOI Listing |
J Environ Manage
January 2025
Hebei University of Environmental Engineering, Qinghuangdao, 066102, China.
The synergistic reduction of air pollutants and carbon dioxide (CO) emissions is a key component in achieving China's strategy of pollution and carbon reduction. This study quantitatively evaluates the spatiotemporal linkages between PM and CO emissions, as well as the benefits of sustained synergistic control, across over 360 Chinese cities from 2005 to 2020. We employed spatiotemporal analysis, coupled coordinateness modeling, the Hurst index, and generalized linear mixed modeling (GLMM).
View Article and Find Full Text PDFSci Rep
January 2025
Xinjiang Vocational and Technical College of Communications, Urumqi, Xinjiang, 831401, China.
This paper aims to construct a green environmental protection system by advancing database energy-saving techniques and optimizing the energy-saving mechanism against the backdrop of blockchain integration. The protocol classification of wireless sensor networks is examined within the context of the rapid growth of information technology. The analysis draws upon the database storage and sharing model and recent research examples that connect blockchain and database technology.
View Article and Find Full Text PDFHeliyon
July 2024
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging technique widely utilized in the research of Autism Spectrum Disorder (ASD), providing preliminary insights into the potential biological mechanisms underlying ASD. Deep learning techniques have demonstrated significant potential in the analysis of rs-fMRI. However, accurately distinguishing between healthy control group and ASD has been a longstanding challenge.
View Article and Find Full Text PDFEur J Med Res
January 2025
Clinical Research and Big Data Center, South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
Objectives: Poststroke dysphagia (PSD) is a common complication after stroke but there is limited information on its global prevalence and influencing factors, such as spatial, temporal, demographic characteristics, and stroke-related factors. Our study seeks to fill this knowledge gap by exploring the overall prevalence of PSD and its influencing factors.
Methods: A search of English-language literature from database inception from 2005 until May 2022 was performed using PubMed, Embase, Web of Science, Cochrane Library, and Scopus.
Diagnostics (Basel)
December 2024
Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy.
: Gait analysis, traditionally performed with lab-based optical motion capture systems, offers high accuracy but is costly and impractical for real-world use. Wearable technologies, especially inertial measurement units (IMUs), enable portable and accessible assessments outside the lab, though challenges with sensor placement, signal selection, and algorithm design can affect accuracy. This systematic review aims to bridge the benchmarking gap between IMU-based and traditional systems, validating the use of wearable inertial systems for gait analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!