Background: Age-related macular degeneration (AMD) is a leading cause of impaired vision as well as some earlier effects, such as reading and face recognition. Oxidative damage and inflammation of retinal pigment epithelial (RPE) cells are major causes of AMD. Additionally, autophagy in RPE cells can lead to cellular homeostasis under oxidative stress. Nucleotide-binding oligomerization domain (NOD)-like receptor X1 (NLRX1) is a mysterious modulator of the immune system function which inhibits inflammatory response, attenuates reactive oxygen species (ROS) production, and regulates autophagy. This study attempted to explore the role of NLRX1 in oxidative stress, inflammation, and autophagy in AMD.

Methods: An model of AMD was built in human retinal pigment epithelial cell line 19 (ARPE-19) treated with HO. The cell viability, NLRX1 expressions, levels of superoxide dismutase (SOD), glutathione (GHS), and ROS, concentrations of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and monocyte chemoattractant protein-1 (MCP-1), expressions of NLRX1, p62, LC3-II/LC3-I, FUNDC1, and NOD-like receptor protein 3 (NLRP3) inflammasome were expounded by cell counting kit-8, colorimetric, enzyme-linked immunosorbent serologic assay (ELISA), and Western blot assay.

Results: HO treatment notably reduced the relative protein expression of NLRX1. Meanwhile, HO incubation decreased cell viability, diminished SOD and GSH concentrations, accompanied with the increased level of ROS, enhanced IL-1β, TNF-α, IL-6, and MCP-1 concentrations, and aggrandized the relative protein expression of p62 with reduced LC3-II/LC3-I ratio. Moreover, these results were further promoted with knockdown of NLRX1 and reversed with overexpression. Mechanically, silencing of NLRX1 further observably enhanced the relative levels of -phosphorylated FUNDC1/FUNDC1, and NLRP3 inflammasome-related proteins, while overexpression of NLRX1 exhibited inverse results in the HO-induced ARPE-19 cells.

Conclusion: NLRX1 suppressed HO-induced oxidative stress and inflammation, and facilitated autophagy by suppressing FUNDC1 phosphorylation and NLRP3 activation in ARPE-19 cells.

Download full-text PDF

Source
http://dx.doi.org/10.15586/aei.v51i1.766DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
retinal pigment
12
pigment epithelial
12
stress inflammation
12
nlrx1
10
human retinal
8
ho-induced oxidative
8
suppressing fundc1
8
fundc1 phosphorylation
8
phosphorylation nlrp3
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!