Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical coherence tomography angiography (OCTA) can provide in vivo three-dimensional microvasculature information of bio-tissues, but it is sensitive to motion and time-consuming. To overcome these limitations, we propose an adaptive multiple time interval correlation mapping OCTA with a time-efficient scanning protocol and motion compensation algorithms. A spectral-domain OCT with a center wavelength of 850 nm, A-scan rate of 120 kHz and spatial resolution of 4.1 μm (axial) × 6.9 μm (lateral) is built to reconstruct the microvascular networks in the human arm. By adaptive optimization of the weights of different time interval B-scan angiograms, our novel OCTA technique achieves better performance with a visible vascular density increase of ~67% and a signal-to-noise ratio enhancement of ~11.6%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.202200340 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!