We investigated VEGF expression in the uterus during the estrous cycle in the golden hamster (Mesocricetus auratus). Reverse transcription polymerase chain reaction of genes expressed in the uterus revealed the presence of at least three different VEGF isoforms (hamster VEGF188, VEGF164, and VEGF120). They were highly homologous to the respective mouse and human isoforms. Furthermore, VEGF164 and VEGF120 were predominantly expressed in the hamster uterus during the estrous cycle. In situ hybridization revealed that VEGF is expressed only in the luminal and glandular epithelium of the endometrium but not in the stromal cells or myometrium. The positive reaction of luminal and glandular epithelial cells on day 4 of the estrous cycle (day 1 = day of ovulation) was a little stronger than that of other days of the cycle. These findings suggest that VEGF molecules are secreted by endometrial epithelial cells and play an important role in the maintenance of blood vessels in the endometrial stroma. These results also suggest that uterine changes, such as edema, observed from day 4 to day 1 of the estrous cycle, are expected to occur primarily through the action of VEGF secreted by the uterine endometrial epithelium in preparation for subsequent embryo implantation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.13804DOI Listing

Publication Analysis

Top Keywords

estrous cycle
20
uterus estrous
12
expressed uterus
8
cycle golden
8
mesocricetus auratus
8
vegf164 vegf120
8
luminal glandular
8
epithelial cells
8
day estrous
8
cycle
6

Similar Publications

Multi-dimensional oscillatory activity of mouse GnRH neurons in vivo.

Elife

January 2025

Department of Physiology, Development and Neuroscience, Downing site, University of Cambridge, Cambridge, United Kingdom.

The gonadotropin-releasing hormone (GnRH) neurons represent the key output cells of the neural network controlling mammalian fertility. We used GCaMP fiber photometry to record the population activity of the GnRH neuron distal projections in the ventral arcuate nucleus where they merge before entering the median eminence to release GnRH into the portal vasculature. Recordings in freely behaving intact male and female mice revealed abrupt ~8 min duration increases in activity that correlated perfectly with the appearance of a subsequent pulse of luteinizing hormone (LH).

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) involves complex genetic, metabolic, endocrine, and environmental factors. This study explores the effects of nicotinamide mononucleotide (NMN) in a letrozole-induced PCOS mouse model, focusing on metabolic regulation. Letrozole-induced aromatase inhibition elevated androgen and reduced bile acid levels, linking liver dysfunction and gut imbalance to PCOS.

View Article and Find Full Text PDF

Exposure to 6PPD-Q induces dysfunctions of ovarian granulosa cells: Its potential role in PCOS.

J Hazard Mater

December 2024

Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China. Electronic address:

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an environmental pollutant derived from the ozonolysis of the widely used tire rubber antioxidant 6PPD, has been found to accumulate in air, dust, and water, posing significant health risks. While its reproductive toxicity in male organisms has been established, its effects on female reproductive health remain unclear. Polycystic ovary syndrome (PCOS), a common endocrine disorder in premenopausal women, is known to be influenced by environmental pollutants.

View Article and Find Full Text PDF

Circadian rhythm disruption (CRD), stemming from sleep disorders and/or shift work, is a risk factor for reproductive dysfunction. CRD has been reported to disturb nocturnal melatonin signaling, which plays a crucial role in female reproduction as a circadian regulator and an antioxidant. The hypothalamic-pituitary-ovarian (HPO) axis regulates female reproduction, with luteinizing hormone (LH) pulse pattern playing a pivotal role in folliculogenesis and steroidogenesis.

View Article and Find Full Text PDF

Equine endometrosis is a major cause of infertility in mares and is characterized by degenerative, functional and fibrotic changes in the endometrium with increased collagen (COL) deposition. Transforming growth factor (TGF)-β1 is one of the major pro-fibrotic factors involved in the excessive deposition of extracellular matrix (ECM) components in the equine endometrium. It has been demonstrated that ovarian steroids, specifically 17β-estradiol (E2) and progesterone (P4), not only regulate the cyclicity of the estrous cycle, but also have been implicated as anti- or pro-fibrotic factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!