Human cytomegalovirus (HCMV) is a widespread virus that can cause serious and irreversible neurological damage in newborns and even death in children who do not have the access to much-needed medications. While some vaccines and drugs are found to be effective against HCMV, their extended use has given rise to dose-limiting toxicities and the development of drug-resistant mutants among patients. Despite half a century's worth of research, the lack of a licensed HCMV vaccine heightens the need to develop newer antiviral therapies and vaccine candidates with improved effectiveness and reduced side effects. In this study, the immunoinformatics approach was utilized to design a potential polyvalent epitope-based vaccine effective against the four virulent strains of HCMV. The vaccine was constructed using seven CD8+ cytotoxic T lymphocytes epitopes, nine CD4+ helper T lymphocyte epitopes, and twelve linear B-cell lymphocyte epitopes that were predicted to be antigenic, non-allergenic, non-toxic, fully conserved, and non-human homologous. Subsequently, molecular docking study, protein-protein interaction analysis, molecular dynamics simulation (including the root mean square fluctuation (RMSF) and root mean square deviation (RMSD)), and immune simulation study rendered promising results assuring the vaccine to be stable, safe, and effective. Finally, cloning was conducted to develop an efficient mass production strategy of the vaccine. However, further and research studies on the proposed vaccine are required to confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2021.2014969 | DOI Listing |
Bull Math Biol
January 2025
Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA.
Immune events such as infection, vaccination, and a combination of the two result in distinct time-dependent antibody responses in affected individuals. These responses and event prevalence combine non-trivially to govern antibody levels sampled from a population. Time-dependence and disease prevalence pose considerable modeling challenges that need to be addressed to provide a rigorous mathematical underpinning of the underlying biology.
View Article and Find Full Text PDFVet Res Commun
January 2025
Soil Science Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia.
Extracellular hydrolytic activity (phospholipase, protease and hemolysin production) was evaluated in 178 strains of potentially pathogenic ascomycetous (Candida parapsilosis, Candida tropicalis) and basidiomycetous (Rhodotorula mucilaginosa) yeasts isolated from the excreta of Mew Gulls. Two bird colonies, one nesting in a natural habitat and the other in an urban habitat at the landfill, were studied simultaneously during their 7-month breeding season. Significant differences in phospholipase and protease production were found between natural and anthropophized strains.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, People's Republic of China.
The development of tumor vaccines represents a significant focus within cancer therapeutics research. Nonetheless, the efficiency of antigen presentation in tumor vaccine remains suboptimal. We introduce an innovative mRNA-lipid nanoparticle platform designed to express tumor antigenic epitopes fused with the transmembrane domain and cytoplasmic tail of the neonatal Fc receptor (FcRn).
View Article and Find Full Text PDFBull Math Biol
January 2025
Department of Mathematics and Computer Science, Lawrence Technological University, 21000 W. 10 Mile Rd., Southfield, MI, 48075, USA.
We investigate the impact of differential vaccine effectiveness, waning immunity, and natural cross-immunity on the capacity for vaccine-induced strain replacement in two-strain models of infectious disease spread. We focus specifically on the case where the first strain is more transmissible but the second strain is more immune-resistant. We consider two cases on vaccine-induced immunity: (1) a monovalent model where the second strain has immune escape with respect to vaccination; and (2) a bivalent model where the vaccine remains equally effective against both strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!