antibiofilm, antibacterial, antioxidant, and antitumor activities of the brown alga biomass extract.

Int J Environ Health Res

Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt.

Published: April 2024

The antibiofilm, antibacterial, antioxidant, and anticancer activities of the methanolic extract of L. were determined. Results deduced that the algal extract had a high biofilm formation inhibitory action done via crystal violet (CV) assay, to 88-99%. The results showed a strong antibacterial against the identified bacteria species. , , , , , and the extract had moderate antibacterial activity against , and . The algal extract has a concentration-dependent DPPH radical scavenging activity (84.59%, with IC = 170.31 µg/ml). The inhibitory percent of methanolic extract antiproliferative activity was 1.79-98.25% with IC = 15.14 µg/ml against lung carcinoma. Phenols, terpenes, amino acids, alkaloids, flavones, alcohols, and fatty acids were among the metabolites whose biological actions were evaluated. In conclusion, for the first time, methanolic extract exhibited effective antibiofilm, antibacterial, antioxidant, and anticancer activities.      .

Download full-text PDF

Source
http://dx.doi.org/10.1080/09603123.2023.2165045DOI Listing

Publication Analysis

Top Keywords

antibiofilm antibacterial
12
antibacterial antioxidant
12
methanolic extract
12
antioxidant anticancer
8
algal extract
8
extract
7
antioxidant antitumor
4
antitumor activities
4
activities brown
4
brown alga
4

Similar Publications

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

Biofilm formation, extracellular substance synthesis, and virulence factor production all have a major impact on drug tolerance and infection propagation caused by Staphylococcus aureus. Flavonoid compounds have been explored as potential solutions to enhance antibiotic efficacy against the biofilm formation of pathogenic microbes. Quercetin (QER) has previously demonstrated antibacterial and antibiofilm properties.

View Article and Find Full Text PDF

The objective of this study was to analyze the antimicrobial and anti-stick capacity of essential oil extracted from oregano (Origanum vulgare) in relation to various strains of Escherichia coli (Ec 41, Ec 42, Ec 44, Ec 45) isolated from meat products. Techniques such as Determination of Minimum Inhibitory Concentration were used (MIC) and Minimum Bactericidal Concentration (CBM). Furthermore, the method was used disk diffusion method to examine the interaction between O.

View Article and Find Full Text PDF

Aim: Chronic wound infections present a prevalent medical issue and a multifaceted problem that significantly impacts healthcare systems worldwide. Biofilms formed by pathogenic bacteria are fundamental virulence factors implicated in the complexity and persistence of bacterial-associated wound infections, leading to prolonged recovery times and increased risk of infection. This study aims to investigate the antibacterial effectiveness of commonly employed bioactive wound healing compositions with a particular emphasis on their effectiveness against common bacterial pathogens encountered in chronic wounds - , , and to identify optimal wound product composition for managing chronic wound infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!