Optical fiber biosensors (OFBS) are being increasingly proposed due to their intrinsic advantages over conventional sensors, including their compactness, potential remote control and immunity to electromagnetic interference. This review systematically introduces the advances of OFBS based on long-period fiber gratings (LPFGs) for chemical and biomedical applications from the perspective of design and functionalization. The sensitivity of such a sensor can be enhanced by designing the device working at or near the dispersion turning point, or working around the mode transition, or their combination. In addition, several common functionalization methods are summarized in detail, such as the covalent immobilization of 3-aminopropyltriethoxysilane (APTES) silanization and graphene oxide (GO) functionalization, and the noncovalent immobilization of the layer-by-layer assembly method. Moreover, reflective LPFG-based sensors with different configurations have also been introduced. This work aims to provide a comprehensive understanding of LPFG-based biosensors and to suggest some future directions for exploration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823881 | PMC |
http://dx.doi.org/10.3390/s23010542 | DOI Listing |
Int J Biol Macromol
December 2024
Institute for Fiber Engineering and Science (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan. Electronic address:
This study presents the first development of Cu (I) acylthiourea complexes (C1-C5) incorporated polycaprolactone/lignin (PCL/Lig) electrospun nanofiber composites (PCL/Lig@Cu(I)). Electrospinning conditions and mass ratios of PCL and lignin were optimized, followed by the incorporation of varying concentrations of Cu(I) complexes. Structural, morphological, and thermal properties were characterized using SEM, TEM, FT-IR, XRD, TGA and WCA analyses.
View Article and Find Full Text PDFBiomater Sci
December 2024
FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
Recent advances in optical sensing technologies underpin the development of high-performance, surface-sensitive analytical tools capable of reliable and precise detection of molecular targets in complex biological media in non-laboratory settings. Optical fibre sensors guide light to and from a region of interest, enabling sensitive measurements of localized environments. This positions optical fibre sensors as a highly promising technology for a wide range of biochemical and healthcare applications.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
Nanophotonics
July 2024
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China.
We propose and demonstrate the simulation and fabrication of an all-fiber orbital angular momentum (OAM) mode converter capable of generating first- to fourth-order modes simultaneously, which is realized by inscribing a cascaded preset-twist long-period fiber grating (CPT-LPFG) in a six-mode fiber utilizing a CO laser. A new segmented Runge-Kutta method is proposed to simulate the preset-twist long-period fiber gratings. By calculating the twist angle and relative coupling coefficient for each pitch and then solving the coupled mode equations utilizing the Runge-Kutta algorithm.
View Article and Find Full Text PDFCureus
November 2024
Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!