Vitamins are essential for sustaining daily activities and perform crucial roles in metabolism, such as preventing vascular events and delaying the development of diabetic nephropathy. The ultrasensitive assessment of thiamine in foods is required for food quality evaluation. A mini-platform utilizing two 3D sensors based on nanographene and gold nanoparticles paste modified with protoporphyrin IX and protoporphyrin IX cobalt chloride is proposed for the detection of thiamine in blueberry syrup, multivitamin tablets, water, and a biological sample (urine). Differential pulse voltammetry was utilized for the characterization and validation of the suggested sensors. The sensor modified with protoporphyrin IX has a detection limit of 3.0 × 10 mol L and a quantification limit of 1.0 × 10 mol L, whereas the sensor modified with protoporphyrin IX cobalt chloride has detection and quantification limits of 3.0 × 10 and 1.0 × 10 mol L, respectively. High recoveries (values greater than 95.00%) and low RSD (%) values (less than 5.00%) are recorded for both 3D sensors when used for the determination of thiamine in blueberry syrup, multivitamin tablets, water, and urine, demonstrating the 3D sensors' and suggested method's high reliability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824161PMC
http://dx.doi.org/10.3390/s23010344DOI Listing

Publication Analysis

Top Keywords

modified protoporphyrin
12
protoporphyrin cobalt
8
cobalt chloride
8
thiamine blueberry
8
blueberry syrup
8
syrup multivitamin
8
multivitamin tablets
8
tablets water
8
sensor modified
8
limit mol
8

Similar Publications

Article Synopsis
  • Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are rare genetic disorders that lack comprehensive management data, prompting a study of their characteristics and treatment in real-world U.S. settings.
  • The study reviewed medical records of 299 EPP and 91 XLP patients, revealing a mean diagnosis delay of 2.9 years and highlighting common pre-diagnostic tests and lifestyle recommendations.
  • Findings indicated a significant number of healthcare visits post-diagnosis and identified unmet needs, such as the need for quicker diagnoses, effective symptom relief, and better prevention of phototoxic reactions.
View Article and Find Full Text PDF

Epigenetic control of tetrapyrrole biosynthesis by m4C DNA methylation in a cyanobacterium.

DNA Res

December 2024

University of Freiburg, Faculty of Biology, Genetics and Experimental Bioinformatics, Schänzlestr. 1, D-79104 Freiburg, Germany.

Epigenetic DNA modifications are pivotal in eukaryotic gene expression, but their regulatory significance in bacteria is less understood. In Synechocystis 6803, the DNA methyltransferase M.Ssp6803II modifies the first cytosine in the GGCC motif, forming N4-methylcytosine (GGm4CC).

View Article and Find Full Text PDF

Functionalized Iron Oxide Nanoparticles for Both Dual-Modal Imaging and Erythropoiesis.

ACS Appl Mater Interfaces

December 2024

Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.

Cancer-related anemia (CRA), a complication of cancer, is considered the primary cause of high mortality for cancer patients. Safe and effective theranostics are desirable for realizing the high diagnostic accuracy of tumors and ameliorating CRA in the clinic. However, the available theranostics do not support dual-modal imaging and the amelioration of CRA at the same time.

View Article and Find Full Text PDF

Spatial confinement growth of high-performance persistent luminescence nanoparticles for image-guided sonodynamic therapy.

Acta Biomater

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, PR China. Electronic address:

Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have significant potential in diagnostic and therapeutic applications owing to their unique persistent luminescence (PersL). However, obtaining high-performance NIR PLNPs remains challenging because of the limitations of current synthesis methods. Herein, we introduce a spatial confinement growth strategy for synthesizing high-performance NIR PLNPs using hollow mesoporous silica (hmSiO).

View Article and Find Full Text PDF

Next-generation photodynamic antimicrobial materials made by direct synthesis of functional bacterial cellulose.

Int J Biol Macromol

December 2024

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China. Electronic address:

Bacterial cellulose (BC) regularly uses chemical or physical modifications to produce antimicrobial wound dressings. However, there is a risk of loss of functional components during application. Moreover, a significant hurdle lies in successfully integrating durable and highly effective bactericidal entities with BC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!